Distributing a matrix The 2019 Stack Overflow Developer Survey Results Are InOn multiplying quaternion matricesWhen is matrix multiplication commutative?Matrix multiplicationWhy aren't all matrices diagonalisable?Linear Transformation vs Matrixhow many ways is there to factor matrix?Can an arbitrary matrix represent any linear map just by changing the basis?Inverse matrix confusionA question matrix multiplication commutative?Joint Matrices Factorization
Is "plugging out" electronic devices an American expression?
Is there a symbol for a right arrow with a square in the middle?
What do hard-Brexiteers want with respect to the Irish border?
Have you ever entered Singapore using a different passport or name?
Output the Arecibo Message
Are there any other methods to apply to solving simultaneous equations?
Are spiders unable to hurt humans, especially very small spiders?
Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?
Why did Acorn's A3000 have red function keys?
Does a dangling wire really electrocute me if I'm standing in water?
Time travel alters history but people keep saying nothing's changed
Why do UK politicians seemingly ignore opinion polls on Brexit?
Why not take a picture of a closer black hole?
Why can Shazam fly?
Why hard-Brexiteers don't insist on a hard border to prevent illegal immigration after Brexit?
What to do when moving next to a bird sanctuary with a loosely-domesticated cat?
How technical should a Scrum Master be to effectively remove impediments?
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
How to deal with fear of taking dependencies
Apparent duplicates between Haynes service instructions and MOT
How to notate time signature switching consistently every measure
Deal with toxic manager when you can't quit
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Falsification in Math vs Science
Distributing a matrix
The 2019 Stack Overflow Developer Survey Results Are InOn multiplying quaternion matricesWhen is matrix multiplication commutative?Matrix multiplicationWhy aren't all matrices diagonalisable?Linear Transformation vs Matrixhow many ways is there to factor matrix?Can an arbitrary matrix represent any linear map just by changing the basis?Inverse matrix confusionA question matrix multiplication commutative?Joint Matrices Factorization
$begingroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^-1,$$
would it become
$$(I - A)(I - A)^-1 + A(I - A)^-1 $$
OR would it be
$$(I - A)^-1(I - A) + (I - A)^-1A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^-1,$$
would it become
$$(I - A)(I - A)^-1 + A(I - A)^-1 $$
OR would it be
$$(I - A)^-1(I - A) + (I - A)^-1A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^-1,$$
would it become
$$(I - A)(I - A)^-1 + A(I - A)^-1 $$
OR would it be
$$(I - A)^-1(I - A) + (I - A)^-1A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
$endgroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^-1,$$
would it become
$$(I - A)(I - A)^-1 + A(I - A)^-1 $$
OR would it be
$$(I - A)^-1(I - A) + (I - A)^-1A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
linear-algebra
asked 4 hours ago
redblacktreesredblacktrees
424
424
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
add a comment |
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
add a comment |
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
add a comment |
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhboxandquad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
answered 4 hours ago
DavidDavid
69.8k668131
69.8k668131
add a comment |
add a comment |
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
add a comment |
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
add a comment |
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
answered 4 hours ago
Eevee TrainerEevee Trainer
10.4k31742
10.4k31742
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown