Transformation of random variables and joint distributionsPlotting confidence intervalsWhat is the PDF of a variable where a parameter is itself a random variable?NProbability not reliability analysis?Mathematica function to calculate equivalent NormalDistribution from a WeibullDistributionPDF for square of Rician random variable?Convolve discrete random variables efficientlyDistribution of Function of Random Sum of Random VariablesSketching Normal Probability Distributions GraphsConstruct Distribution Histogram From Random VariableNormal distribution plot construction

Multi tool use
Multi tool use

anything or something to eat

What's the difference between 違法 and 不法?

Is there a conventional notation or name for the slip angle?

When quoting, must I also copy hyphens used to divide words that continue on the next line?

Gibbs free energy in standard state vs. equilibrium

Customize circled numbers

What is the difference between "Do you interest" and "...interested in" something?

How should I respond when I lied about my education and the company finds out through background check?

Proving a function is onto where f(x)=|x|.

What is this type of notehead called?

Can someone explain how this makes sense electrically?

Is a model fitted to data or is data fitted to a model?

Bob has never been a M before

Can I sign legal documents with a smiley face?

Global amount of publications over time

Have I saved too much for retirement so far?

Can not upgrade Kali,not enough space in /var/cache/apt/archives

Create all possible words using a set or letters

Do varchar(max), nvarchar(max) and varbinary(max) columns affect select queries?

If a character with the Alert feat rolls a crit fail on their Perception check, are they surprised?

Folder comparison

What does this horizontal bar at the first measure mean?

About a little hole in Z'ha'dum

How to decide convergence of Integrals



Transformation of random variables and joint distributions


Plotting confidence intervalsWhat is the PDF of a variable where a parameter is itself a random variable?NProbability not reliability analysis?Mathematica function to calculate equivalent NormalDistribution from a WeibullDistributionPDF for square of Rician random variable?Convolve discrete random variables efficientlyDistribution of Function of Random Sum of Random VariablesSketching Normal Probability Distributions GraphsConstruct Distribution Histogram From Random VariableNormal distribution plot construction













3












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago















3












$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago













3












3








3





$begingroup$


Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments










share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Given a variable $y_i$, normally distributed with 0 mean and $σ_y$ standard deviation



$y_i$ ~ NormalDistribution[0,$σ_y$ ]



I want to obtain with Mathematica:



  1. The distribution of:
    $x = bary = frac sum_i=1^ny_in$


  2. The joint distribution of $ (x,y_i )$


Thank you for your helpful comments







probability-or-statistics






share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 2 hours ago









mjw

9679




9679






New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









Andrea2810Andrea2810

162




162




New contributor




Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Andrea2810 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago












  • 4




    $begingroup$
    What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
    $endgroup$
    – JimB
    6 hours ago










  • $begingroup$
    @JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
    $endgroup$
    – Andrea2810
    5 hours ago











  • $begingroup$
    You need to "index" the variable y or else Mathematica thinks it is a single variable.
    $endgroup$
    – JimB
    1 hour ago







4




4




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
6 hours ago




$begingroup$
What have you tried? For example, have you seen the documentation on TransformedDistribution and ProbabilityDistribution?
$endgroup$
– JimB
6 hours ago












$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
5 hours ago





$begingroup$
@JimB . I tried this TransformedDistribution[Sum[y, i, n]/n, y [Distributed] NormalDistribution[0, [Sigma]y]]. The result is NormalDistribution[0, [Sigma]y]. However, the correct result should be NormalDistribution[0, [Sigma]y / Sqrt[n]]
$endgroup$
– Andrea2810
5 hours ago













$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
1 hour ago




$begingroup$
You need to "index" the variable y or else Mathematica thinks it is a single variable.
$endgroup$
– JimB
1 hour ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    59 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    57 mins ago



















0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    2 hours ago



















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    59 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    57 mins ago
















2












$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$












  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    59 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    57 mins ago














2












2








2





$begingroup$

I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$






share|improve this answer











$endgroup$



I don't know how to get Mathematica to get the joint distribution explicitly for a general value of $n$ but here is how one can easily see the pattern to figure out the general solution.



First the distribution of the mean:



marginalDistribution = TransformedDistribution[Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n],
Assumptions -> [Sigma] > 0]
#, marginalDistribution/.n-># &/@Range[2,10]


$$
beginarraycc
2 & textNormalDistributionleft[0,fracsigma sqrt2right] \
3 & textNormalDistributionleft[0,fracsigma sqrt3right] \
4 & textNormalDistributionleft[0,fracsigma 2right] \
5 & textNormalDistributionleft[0,fracsigma sqrt5right] \
6 & textNormalDistributionleft[0,fracsigma sqrt6right] \
7 & textNormalDistributionleft[0,fracsigma sqrt7right] \
8 & textNormalDistributionleft[0,fracsigma 2 sqrt2right] \
9 & textNormalDistributionleft[0,fracsigma 3right] \
10 & textNormalDistributionleft[0,fracsigma sqrt10right] \
endarray
$$



So we see that the marginal distribution of $bary$ is



NormalDistribution[0, σ/Sqrt[n]]


The joint distribution of $bary$ and, say, $y_1$ is given by



jointDistribution = TransformedDistribution[y[1], Sum[y[i], i, n]/n, 
Table[y[i] [Distributed] NormalDistribution[0, [Sigma]], i, n]]
#, jointDistribution /. n -> # & /@ Range[2, 10] // TableForm


$$
beginarraycc
2 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^22 \
fracsigma ^22 & fracsigma ^22 \
endarray
right)right] \
3 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^23 \
fracsigma ^23 & fracsigma ^23 \
endarray
right)right] \
4 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^24 \
fracsigma ^24 & fracsigma ^24 \
endarray
right)right] \
5 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^25 \
fracsigma ^25 & fracsigma ^25 \
endarray
right)right] \
6 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^26 \
fracsigma ^26 & fracsigma ^26 \
endarray
right)right] \
7 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^27 \
fracsigma ^27 & fracsigma ^27 \
endarray
right)right] \
8 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^28 \
fracsigma ^28 & fracsigma ^28 \
endarray
right)right] \
9 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^29 \
fracsigma ^29 & fracsigma ^29 \
endarray
right)right] \
10 & textMultinormalDistributionleft[0,0,left(
beginarraycc
sigma ^2 & fracsigma ^210 \
fracsigma ^210 & fracsigma ^210 \
endarray
right)right] \
endarray
$$



So the general distribution is a multivariate normal



MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n]


The general form of the joint density function can then be found with



FullSimplify[PDF[MultinormalDistribution[0, 0, σ^2, σ^2/n, σ^2/n, σ^2/n], y, ybar],
Assumptions -> σ > 0, n > 1]


$$fracn e^-fracn left(n textybar^2+y^2-2 y textybarright)2 (n-1) sigma ^22 pi sqrtn-1 sigma ^2$$







share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 1 hour ago









JimBJimB

18k12863




18k12863











  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    59 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    57 mins ago

















  • $begingroup$
    Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
    $endgroup$
    – mjw
    59 mins ago











  • $begingroup$
    @mjw Good. Answers should always be scrutinized and challenged if desired.
    $endgroup$
    – JimB
    57 mins ago
















$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
59 mins ago





$begingroup$
Anyway, I like your answer! I'll have to look at it to understand (not obvious (to me) that this would be the solution).
$endgroup$
– mjw
59 mins ago













$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
57 mins ago





$begingroup$
@mjw Good. Answers should always be scrutinized and challenged if desired.
$endgroup$
– JimB
57 mins ago












0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    2 hours ago
















0












$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$












  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    2 hours ago














0












0








0





$begingroup$

Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]





share|improve this answer











$endgroup$



Here is the distribution of $x=overliney$ (Part I of your question):



n = 5; (* for example *)
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
TransformedDistribution[Sum[y[k]/n, k, 5], a]


The result is



NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]


UPDATE



Okay, here is how to do it with $n$ a variable:



a[n_] := Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n]; 
p[n_] := TransformedDistribution[Sum[y[k]/n, k, n], a[n]];


Now



x [Distributed] p[5] (* n=5, for example *)


Again, the result is



x [Distributed] NormalDistribution[0, Abs[[Sigma]]/Sqrt[5]]






share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 3 hours ago









mjwmjw

9679




9679











  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    2 hours ago

















  • $begingroup$
    I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
    $endgroup$
    – Andrea2810
    2 hours ago











  • $begingroup$
    Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
    $endgroup$
    – mjw
    2 hours ago











  • $begingroup$
    Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
    $endgroup$
    – Andrea2810
    2 hours ago










  • $begingroup$
    a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
    $endgroup$
    – mjw
    2 hours ago
















$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
2 hours ago





$begingroup$
I am not sure, but shouldn't be n instead of 5 here TransformedDistribution[Sum[y[k]/n, k, 5], a] ? And what if I want to leave n, without assigning a value to n? Thanks @mjw
$endgroup$
– Andrea2810
2 hours ago













$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
2 hours ago





$begingroup$
Oh yes, you are right! I started with 10 and changed to five as I was trying it out. I'll fix it ... Thanks!
$endgroup$
– mjw
2 hours ago













$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
2 hours ago




$begingroup$
Let's go with five because it is clearer. The result is NormalDistribution[0,[Sigma]/Sqrt[5]]. Not sure why Mathematica puts Abs[] around $sigma$. Obviously, $sigma>0$.
$endgroup$
– mjw
2 hours ago












$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
2 hours ago




$begingroup$
Yes, sure it is clearer. Do you have any idea of how can I use n as a parameter, without assigning a value to n?
$endgroup$
– Andrea2810
2 hours ago












$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
$endgroup$
– mjw
2 hours ago





$begingroup$
a[n_] = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
$endgroup$
– mjw
2 hours ago












0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago















0












$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$












  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago













0












0








0





$begingroup$

just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.






share|improve this answer











$endgroup$



just modified @mjw's answer,



n = 100;(*for example*)ClearAll[y]; 
a = Table[y[k] [Distributed] NormalDistribution[0, [Sigma]], k, 1, n];
meanDist = TransformedDistribution[Sum[y[k]/100, k, 100], a]


JointDistribution can be composed by ProductDistribution,
if these random variables are independent.

if not,you have to use Copula



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
RandomVariate[joint, 100] // Histogram3D


enter image description here



joint = ProductDistribution[meanDist, 
Last@*List @@ Part[a, 1]] /. [Sigma] -> 1;
m1 = RandomVariate[meanDist /. [Sigma] -> 1, 100000];
m2 = RandomVariate[
Last@*List @@ Part[a, 1] /. [Sigma] -> 1, 100000];
Correlation[Thread[List[m1, m2]]]
ListPlot[Thread[List[m1, m2]]]


=>



1., -0.00256777, -0.00256777, 1.


enter image description here

I'm not sure about correlation,but it's okay.







share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 3 hours ago









XminerXminer

19918




19918











  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago
















  • $begingroup$
    I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
    $endgroup$
    – mjw
    2 hours ago










  • $begingroup$
    Exactly, the two variables are not independent unfortunately
    $endgroup$
    – Andrea2810
    2 hours ago















$begingroup$
I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
2 hours ago




$begingroup$
I believe that the distributions are not independent. Since $overlinex$ is computed from $y_i$ and other $y_j$'s, it would seem to be dependent. We could compute whether or not the distributions are dependent ...
$endgroup$
– mjw
2 hours ago












$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
2 hours ago




$begingroup$
I would also recommend using 10^6 rather than 100, you'll get a sharper plot!
$endgroup$
– mjw
2 hours ago












$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
2 hours ago




$begingroup$
Exactly, the two variables are not independent unfortunately
$endgroup$
– Andrea2810
2 hours ago










Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.












Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.











Andrea2810 is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193876%2ftransformation-of-random-variables-and-joint-distributions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







aBUYm91M5c7ZrLx,27K,mXEv7W0o2qAZpP5,x7dz8rGEMqYguZbbPO7eDvmRe
KlBHCAXsP5dGwc 1Zk8d34xYtkqrTrQp01zbej D I52x5 Iiq,v,XHh6x15m 8fiKBG,QQ

Popular posts from this blog

What is the result of assigning to std::vector::begin()? The Next CEO of Stack OverflowWhat are the differences between a pointer variable and a reference variable in C++?What does the explicit keyword mean?Concatenating two std::vectorsHow to find out if an item is present in a std::vector?Why is “using namespace std” considered bad practice?What is the “-->” operator in C++?What is the easiest way to initialize a std::vector with hardcoded elements?What is The Rule of Three?What are the basic rules and idioms for operator overloading?Why are std::begin and std::end “not memory safe”?

Creating centerline of river in QGIS? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding centrelines from polygons in QGIS?Splitting line into two lines with GRASS GIS?Centroid of the equator and a pointpostgis: problems creating flow direction polyline; not all needed connections are drawnhow to make decent sense from scattered river depth measurementsQGIS Interpolation on Curved Grid (River DEMs)How to create automatic parking baysShortest path creation between two linesclipping layer using query builder in QGISFinding which side of closest polyline point lies on in QGIS?Create centerline from multi-digitized roadway lines Qgis 2.18Getting bathymetric contours confined only within river banks using QGIS?

SQL Server 2016 - excessive memory grant warning on poor performing query The Next CEO of Stack OverflowFix for slow SQL_INLINE_TABLE_VALUED_FUNCTIONLarge memory grant requestsPoor performing Query -Tsql execution plan - estimated number of rows =1 Paste the PlanMSSQL - Query had to wait for memory grantRow estimates always too lowBad performance using “NOT IN”Warning about memory “Excessive Grant” in the query plan - how to find out what is causing it?Optimizing table valued function SQL ServerWhen does SQL Server warn about an Excessive Memory Grant?Warning in Execution Plan