Is a linearly independent set whose span is dense a Schauder basis? The Next CEO of Stack OverflowCoordinate functions of Schauder basisLinearly independentSchauder basis for a separable Banach spaceWhat is the difference between a Hamel basis and a Schauder basis?Hamel basis for subspacesExistence of weak Schauder-basis for concrete example.Isomorphisms with invariant linearly independent dense subset.Linear independence and Schauder basisWhy isn't every Hamel basis a Schauder basis?Schauder basis that is not Hilbert basis

What steps are necessary to read a Modern SSD in Medieval Europe?

Compensation for working overtime on Saturdays

Free fall ellipse or parabola?

What happens if you break a law in another country outside of that country?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

How exploitable/balanced is this homebrew spell: Spell Permanency?

How to find if SQL server backup is encrypted with TDE without restoring the backup

Is it reasonable to ask other researchers to send me their previous grant applications?

Shortening a title without changing its meaning

Horror film about a man brought out of cryogenic suspension without a soul, around 1990

Is a distribution that is normal, but highly skewed, considered Gaussian?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

How to show a landlord what we have in savings?

Is it correct to say moon starry nights?

Calculate the Mean mean of two numbers

Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?

Is it possible to create a QR code using text?

Strange use of "whether ... than ..." in official text

Simplify trigonometric expression using trigonometric identities

How do I keep Mac Emacs from trapping M-`?

Cannot restore registry to default in Windows 10?

Is the sample correlation always positively correlated with the sample variance?



Is a linearly independent set whose span is dense a Schauder basis?



The Next CEO of Stack OverflowCoordinate functions of Schauder basisLinearly independentSchauder basis for a separable Banach spaceWhat is the difference between a Hamel basis and a Schauder basis?Hamel basis for subspacesExistence of weak Schauder-basis for concrete example.Isomorphisms with invariant linearly independent dense subset.Linear independence and Schauder basisWhy isn't every Hamel basis a Schauder basis?Schauder basis that is not Hilbert basis










3












$begingroup$


If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



If not, does anyone know of any counterexamples?










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



    If not, does anyone know of any counterexamples?










    share|cite|improve this question









    $endgroup$














      3












      3








      3


      1



      $begingroup$


      If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



      If not, does anyone know of any counterexamples?










      share|cite|improve this question









      $endgroup$




      If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?



      If not, does anyone know of any counterexamples?







      linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      Keshav SrinivasanKeshav Srinivasan

      2,39121446




      2,39121446




















          1 Answer
          1






          active

          oldest

          votes


















          10












          $begingroup$

          No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



          A Schauder basis is, in general, much harder to construct than a set with dense span.



          Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset set) that have no Schauder basis at all.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171184%2fis-a-linearly-independent-set-whose-span-is-dense-a-schauder-basis%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



            A Schauder basis is, in general, much harder to construct than a set with dense span.



            Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset set) that have no Schauder basis at all.






            share|cite|improve this answer











            $endgroup$

















              10












              $begingroup$

              No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



              A Schauder basis is, in general, much harder to construct than a set with dense span.



              Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset set) that have no Schauder basis at all.






              share|cite|improve this answer











              $endgroup$















                10












                10








                10





                $begingroup$

                No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



                A Schauder basis is, in general, much harder to construct than a set with dense span.



                Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset set) that have no Schauder basis at all.






                share|cite|improve this answer











                $endgroup$



                No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$, but is not a Schauder basis of that space. (Not every continuous function is given by a power series.)



                A Schauder basis is, in general, much harder to construct than a set with dense span.



                Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset set) that have no Schauder basis at all.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 10 mins ago

























                answered 3 hours ago









                GEdgarGEdgar

                63.3k268173




                63.3k268173



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171184%2fis-a-linearly-independent-set-whose-span-is-dense-a-schauder-basis%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                    Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                    Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager