Is a vector space a subspace of itself?vector space and its subspaceProve: The set of all polynomials p with p(2) = p(3) is a vector spaceProving a vector space over itself have no subspacesVector Space vs SubspaceProving a subset is a subspace of a Vector SpaceAre all vector spaces also a subspace?Understand the definition of a vector subspaceProve that, with vector addition and scalar multiplication well-defined, $V/W$ becomes a vector space over $k$.Is the set of all exponential functions a subspace of the vector space of all continuous functions?I've seen two definitions of subspace; one involving vector spaces and one requiring linear combinations

Multi tool use
Multi tool use

Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore

What is the offset in a seaplane's hull?

Email Account under attack (really) - anything I can do?

"listening to me about as much as you're listening to this pole here"

Can I find out the caloric content of bread by dehydrating it?

"My colleague's body is amazing"

COUNT(*) or MAX(id) - which is faster?

Why do UK politicians seemingly ignore opinion polls on Brexit?

Does bootstrapped regression allow for inference?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Why airport relocation isn't done gradually?

extract characters between two commas?

Prime joint compound before latex paint?

Is there a way to make member function NOT callable from constructor?

Need help identifying/translating a plaque in Tangier, Morocco

Information to fellow intern about hiring?

Doomsday-clock for my fantasy planet

How could a lack of term limits lead to a "dictatorship?"

How to make payment on the internet without leaving a money trail?

Why is the design of haulage companies so “special”?

Does it makes sense to buy a new cycle to learn riding?

Shall I use personal or official e-mail account when registering to external websites for work purpose?

What do the Banks children have against barley water?

Denied boarding due to overcrowding, Sparpreis ticket. What are my rights?



Is a vector space a subspace of itself?


vector space and its subspaceProve: The set of all polynomials p with p(2) = p(3) is a vector spaceProving a vector space over itself have no subspacesVector Space vs SubspaceProving a subset is a subspace of a Vector SpaceAre all vector spaces also a subspace?Understand the definition of a vector subspaceProve that, with vector addition and scalar multiplication well-defined, $V/W$ becomes a vector space over $k$.Is the set of all exponential functions a subspace of the vector space of all continuous functions?I've seen two definitions of subspace; one involving vector spaces and one requiring linear combinations













1












$begingroup$


We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    1 hour ago















1












$begingroup$


We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    1 hour ago













1












1








1


1



$begingroup$


We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.










share|cite|improve this question











$endgroup$




We know that a subspace is a vector space that follows the same addition and multiplication rules as $Bbb V$, but is a vector space a subspace of itself?
Also, I'm getting confused doing the practice questions, on when we prove that something is a vector space by using the subspace test and when we prove V1 - V10.







linear-algebra vector-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 25 mins ago









Eric Wofsey

192k14220352




192k14220352










asked 3 hours ago









mingming

4456




4456







  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    1 hour ago












  • 1




    $begingroup$
    How do you define a subspace of a vector space?
    $endgroup$
    – Brian
    3 hours ago






  • 1




    $begingroup$
    Is a set a subset of itself?? What’s V1-V10?
    $endgroup$
    – J. W. Tanner
    3 hours ago







  • 1




    $begingroup$
    The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
    $endgroup$
    – Theo Bendit
    3 hours ago










  • $begingroup$
    As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
    $endgroup$
    – Xander Henderson
    1 hour ago







1




1




$begingroup$
How do you define a subspace of a vector space?
$endgroup$
– Brian
3 hours ago




$begingroup$
How do you define a subspace of a vector space?
$endgroup$
– Brian
3 hours ago




1




1




$begingroup$
Is a set a subset of itself?? What’s V1-V10?
$endgroup$
– J. W. Tanner
3 hours ago





$begingroup$
Is a set a subset of itself?? What’s V1-V10?
$endgroup$
– J. W. Tanner
3 hours ago





1




1




$begingroup$
The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
$endgroup$
– Theo Bendit
3 hours ago




$begingroup$
The term "proper" subspace is often used to denote a subspace space that is not the entire vector space.
$endgroup$
– Theo Bendit
3 hours ago












$begingroup$
As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
$endgroup$
– Xander Henderson
1 hour ago




$begingroup$
As other commenters have noted, your question lacks context. Please edit your question to include more context, lest your question be closed. Please give a definition of a subspace. Please explain what V1 - V10 means. If you are working from a particular text, a citation to that text would be helpful, too.
$endgroup$
– Xander Henderson
1 hour ago










2 Answers
2






active

oldest

votes


















7












$begingroup$

Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    I'm guessing that V1 - V10 are the axioms for proving vector spaces.



    To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



    There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



    Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



    I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



    You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180447%2fis-a-vector-space-a-subspace-of-itself%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






      share|cite|improve this answer









      $endgroup$

















        7












        $begingroup$

        Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






        share|cite|improve this answer









        $endgroup$















          7












          7








          7





          $begingroup$

          Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.






          share|cite|improve this answer









          $endgroup$



          Yes, every vector space is a vector subspace of itself, since it is a non-empty subset of itself which is closed with respect to addition and with respect to product by scalars.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          José Carlos SantosJosé Carlos Santos

          173k23133241




          173k23133241





















              2












              $begingroup$

              I'm guessing that V1 - V10 are the axioms for proving vector spaces.



              To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



              There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



              Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



              I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



              You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                I'm guessing that V1 - V10 are the axioms for proving vector spaces.



                To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



                There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



                Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



                I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



                You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  I'm guessing that V1 - V10 are the axioms for proving vector spaces.



                  To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



                  There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



                  Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



                  I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



                  You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.






                  share|cite|improve this answer









                  $endgroup$



                  I'm guessing that V1 - V10 are the axioms for proving vector spaces.



                  To prove something is a vector space, independent of any other vector spaces you know of, you are required to prove all of the axioms in the definition. Not all operations that call themselves $+$ are worthy addition operations; just because you denote it $+$ does not mean it is (for example) associative, or has an additive identity.



                  There is a lot to prove, because there's a lot to gain. Vector spaces have a simply enormous amount of structure, and that structure gives us a really rich theory and powerful tools. If you have an object that you wish to understand better, and you can show it is a vector space (or at least, related to a vector space), then you'll instantly have some serious mathematical firepower at your fingertips.



                  Subspaces give us a shortcut to proving a vector space. If you have a subset of a known vector space, then you can prove just $3$ properties, rather than $10$. We can skip a lot of the steps because somebody has already done them previously when showing the larger vector space is indeed a vector space. You don't need to show, for example, $v + w = w + v$ for all $v, w$ in your subset, because we already know this is true for all vectors in the larger vector space.



                  I'm writing this, not as a direct answer to your question (which Jose Carlos Santos has answered already), but because confusion like this often stems from some sloppiness on the above point. I've seen many students (and, lamentably, several instructors) fail to grasp that showing the subspace conditions on a set that is not clearly a subset of a known vector space does not prove a vector space. The shortcut works because somebody has already established most of the axioms beforehand, but if this is not true, then the argument is a fallacy.



                  You can absolutely apply the subspace conditions on the whole of a vector space provided you've proven it's a vector space already with axioms V1 - V10.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Theo BenditTheo Bendit

                  20.7k12354




                  20.7k12354



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180447%2fis-a-vector-space-a-subspace-of-itself%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      qZ1bGeB
                      GL G,RLPlnGBK2,5SnVtQ,pB XaQg2y,68OubpJUjRQ5v9z7X6DF0 AETpCCAIqcCBCWFmFwZHV10Rr xafeHPT7,Vj csVSy5lR,1egdLNLhR

                      Popular posts from this blog

                      Creating centerline of river in QGIS? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding centrelines from polygons in QGIS?Splitting line into two lines with GRASS GIS?Centroid of the equator and a pointpostgis: problems creating flow direction polyline; not all needed connections are drawnhow to make decent sense from scattered river depth measurementsQGIS Interpolation on Curved Grid (River DEMs)How to create automatic parking baysShortest path creation between two linesclipping layer using query builder in QGISFinding which side of closest polyline point lies on in QGIS?Create centerline from multi-digitized roadway lines Qgis 2.18Getting bathymetric contours confined only within river banks using QGIS?

                      What is the result of assigning to std::vector::begin()? The Next CEO of Stack OverflowWhat are the differences between a pointer variable and a reference variable in C++?What does the explicit keyword mean?Concatenating two std::vectorsHow to find out if an item is present in a std::vector?Why is “using namespace std” considered bad practice?What is the “-->” operator in C++?What is the easiest way to initialize a std::vector with hardcoded elements?What is The Rule of Three?What are the basic rules and idioms for operator overloading?Why are std::begin and std::end “not memory safe”?