free fall ellipse or parabola? The Next CEO of Stack OverflowCoriolis force in free fallContainer of liquid in free fallFree fall from spaceMimicking Free FallFree Fall with Air ResistanceFree fall around EarthFree fall of stonesVelocity of a body in free fallFree fall in a centrifugal space ship?The maths of free fall and near free fall

Prepend last line of stdin to entire stdin

Reference request: Grassmannian and Plucker coordinates in type B, C, D

AB diagonalizable then BA also diagonalizable

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Can you teleport closer to a creature you are Frightened of?

From jafe to El-Guest

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Defamation due to breach of confidentiality

Audio Conversion With ADS1243

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Reshaping json / reparing json inside shell script (remove trailing comma)

Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank

What happened in Rome, when the western empire "fell"?

Is it ok to trim down a tube patch?

Help! I cannot understand this game’s notations!

Is there a way to save my career from absolute disaster?

Calculate the Mean mean of two numbers

Film where the government was corrupt with aliens, people sent to kill aliens are given rigged visors not showing the right aliens

Strange use of "whether ... than ..." in official text

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

How to Implement Deterministic Encryption Safely in .NET

Is French Guiana a (hard) EU border?

Is it okay to majorly distort historical facts while writing a fiction story?

How did Beeri the Hittite come up with naming his daughter Yehudit?



free fall ellipse or parabola?



The Next CEO of Stack OverflowCoriolis force in free fallContainer of liquid in free fallFree fall from spaceMimicking Free FallFree Fall with Air ResistanceFree fall around EarthFree fall of stonesVelocity of a body in free fallFree fall in a centrifugal space ship?The maths of free fall and near free fall










1












$begingroup$


Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.










      share|cite|improve this question











      $endgroup$




      Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.







      newtonian-mechanics gravity orbital-motion projectile free-fall






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 18 mins ago









      Aaron Stevens

      13.7k42250




      13.7k42250










      asked 38 mins ago









      user56930user56930

      174




      174




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



          On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



          At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



            On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



            At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



              On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



              At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



                On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



                At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.






                share|cite|improve this answer









                $endgroup$



                The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.



                On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.



                At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 31 mins ago









                Cort AmmonCort Ammon

                24k34779




                24k34779



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                    Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                    Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager