Is Lorentz symmetry broken if SUSY is broken?Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?

Is Lorentz symmetry broken if SUSY is broken?

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

Arrow those variables!

Why does Kotter return in Welcome Back Kotter

intersection of two sorted vectors in C++

Combinations of multiple lists

Neighboring nodes in the network

Is it possible to download Internet Explorer on my Mac running OS X El Capitan?

Fully-Firstable Anagram Sets

What mechanic is there to disable a threat instead of killing it?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

Stopping power of mountain vs road bike

Twin primes whose sum is a cube

I would say: "You are another teacher", but she is a woman and I am a man

Why is the 'in' operator throwing an error with a string literal instead of logging false?

Today is the Center

Brothers & sisters

1960's book about a plague that kills all white people

Is it canonical bit space?

Can a virus destroy the BIOS of a modern computer?

Blender 2.8 I can't see vertices, edges or faces in edit mode

Alternative to sending password over mail?

Assassin's bullet with mercury

Is it legal for company to use my work email to pretend I still work there?



Is Lorentz symmetry broken if SUSY is broken?


Multiple vacua vs. vev's in qftIs broken supersymmetry compatible with a small cosmological constant?Why must SUSY be broken?Lorentz transformation of the vacuum stateSupersymmetric background and fermion variationsVacuum energy and supersymmetryCan Poincare representations be embedded in non-standard Lorentz representations?What does soft symmetry breaking physically mean?SUSY vacuum has 0 energy?What does Lorentz index structure say about a full-fledged correlator?













4












$begingroup$


I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



$$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



$$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



Is there something I am missing here? Is this even a bad thing?










share|cite|improve this question









$endgroup$
















    4












    $begingroup$


    I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



    We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



    $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



    If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



    $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



    Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



    Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



    Is there something I am missing here? Is this even a bad thing?










    share|cite|improve this question









    $endgroup$














      4












      4








      4


      2



      $begingroup$


      I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



      We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



      $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



      If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



      $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



      Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



      Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



      Is there something I am missing here? Is this even a bad thing?










      share|cite|improve this question









      $endgroup$




      I have seemingly convinced myself that the entire Poincare group is spontaneously broken if one of the supersymmetric charges is spontaneously broken.



      We know that if one of the supersymmetric charges is spontaneously broken, then a vacuum with zero three-momentum MUST have a nonzero energy. There is no way to re-scale the Hamiltonian since the supersymmetry algebra provides an absolute scale. Let's suppose the vacuum is an eigenstate of $P^mu$, then we have



      $$P^mu|Omegarangle=p^0delta^mu_0|Omegarangle$$



      If we lorentz transform this equation with the unitary operator $U(Lambda)$, we find that a new state $U(Lambda)|Omegarangle$ solves the eigenvalue equation:



      $$P^muU(Lambda)|Omegarangle=(Lambda^-1)^mu_0p^0U(Lambda)|Omegarangle$$



      Since $U(Lambda)P^muU^-1(Lambda)=Lambda^mu_nuP^nu$.



      Therefore we have a whole family of vacua which are orthogonal and related by a lorentz transformation.



      Is there something I am missing here? Is this even a bad thing?







      quantum-field-theory special-relativity supersymmetry lorentz-symmetry symmetry-breaking






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      LucashWindowWasherLucashWindowWasher

      1819




      1819




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            1 hour ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            1 hour ago















          3












          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            1 hour ago













          3












          3








          3





          $begingroup$

          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.






          share|cite|improve this answer









          $endgroup$



          No, Lorentz symmetry is not broken if SUSY is broken. All you have to do is add a constant to the energy; then the four-momentum of the vacuum is zero, as it must be. This is a completely standard thing to do. For instance, it's how we subtract out the divergent vacuum energy contribution around the second week of a first quantum field theory course.



          I can hear you complaining that this messes up the SUSY algebra since $Q, Q sim H$, but who cares? The fact that SUSY is broken means there does not exist a set of operators satisfying the SUSY algebra and annihilating the vacuum. Now forget about SUSY; does there exist a set of operators satisfying the Poincare algebra and annihilating the vacuum? Yes, by adding a constant to $H$. So Lorentz symmetry is not broken here.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          knzhouknzhou

          46.1k11124222




          46.1k11124222











          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            1 hour ago
















          • $begingroup$
            That makes so much sense!
            $endgroup$
            – LucashWindowWasher
            1 hour ago















          $begingroup$
          That makes so much sense!
          $endgroup$
          – LucashWindowWasher
          1 hour ago




          $begingroup$
          That makes so much sense!
          $endgroup$
          – LucashWindowWasher
          1 hour ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470609%2fis-lorentz-symmetry-broken-if-susy-is-broken%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

          Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

          Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager