Help prove this basic trig identity please!If $sintheta + sinphi = a$ and $costheta + cosphi = b$, then $sin(theta+phi) = ???$If $ sin alpha + sin beta = a $ and $ cos alpha + cos beta = b $ , then show that $sin(alpha + beta) = frac 2ab a^2 + b^2 $Trig equation help pleaseHelp With Double Angles And Trig Identity ProblemProve Trig IdentityHow to solve this trigonometric identity?Prove the following Trig Identity with reciprocalsHelp needed in verifying a trigonometric identityHow do I prove this seemingly simple trigonometric identityTrig Identity Proof $frac1 + sinthetacostheta + fraccostheta1 - sintheta = 2tanleft(fractheta2 + fracpi4right)$If $x costheta+ysintheta=a$ and $xsintheta-ycostheta=b$, then $tantheta=fracbx+ayax-by$. (Math Olympiad)Precalc Trig Identity, verify: $1 + cos(x) + cos(2x) = frac 12 + fracsin(5x/2)2sin(x/2)$
Print last inputted byte
What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?
Violin - Can double stops be played when the strings are not next to each other?
Could Sinn Fein swing any Brexit vote in Parliament?
Worshiping one God at a time?
Knife as defense against stray dogs
Is honey really a supersaturated solution? Does heating to un-crystalize redissolve it or melt it?
Does .bashrc contain syntax errors?
Are dual Irish/British citizens bound by the 90/180 day rule when travelling in the EU after Brexit?
What (if any) is the reason to buy in small local stores?
Help prove this basic trig identity please!
Why is indicated airspeed rather than ground speed used during the takeoff roll?
How to terminate ping <dest> &
If "dar" means "to give", what does "daros" mean?
Synchronized implementation of a bank account in Java
Probably overheated black color SMD pads
When did antialiasing start being available?
I seem to dance, I am not a dancer. Who am I?
Asserting that Atheism and Theism are both faith based positions
PTIJ What is the inyan of the Konami code in Uncle Moishy's song?
Calculate the frequency of characters in a string
Suggestions on how to spend Shaabath (constructively) alone
What does "Four-F." mean?
Can other pieces capture a threatening piece and prevent a checkmate?
Help prove this basic trig identity please!
If $sintheta + sinphi = a$ and $costheta + cosphi = b$, then $sin(theta+phi) = ???$If $ sin alpha + sin beta = a $ and $ cos alpha + cos beta = b $ , then show that $sin(alpha + beta) = frac 2ab a^2 + b^2 $Trig equation help pleaseHelp With Double Angles And Trig Identity ProblemProve Trig IdentityHow to solve this trigonometric identity?Prove the following Trig Identity with reciprocalsHelp needed in verifying a trigonometric identityHow do I prove this seemingly simple trigonometric identityTrig Identity Proof $frac1 + sinthetacostheta + fraccostheta1 - sintheta = 2tanleft(fractheta2 + fracpi4right)$If $x costheta+ysintheta=a$ and $xsintheta-ycostheta=b$, then $tantheta=fracbx+ayax-by$. (Math Olympiad)Precalc Trig Identity, verify: $1 + cos(x) + cos(2x) = frac 12 + fracsin(5x/2)2sin(x/2)$
$begingroup$
I'm really stuck trying to answer this question and have spent endless hours doing so.
If $a=sin(theta)+cos(phi)$ and, $b=cos(theta)+sin(phi)$, prove that $cos(theta-phi)=frac2aba^2+b^2$.
I've tried working LHS to RHS and couldn't get, I've also tried RHS to LHS and still couldn't get it, and advice or help would be much appreciated please.
I've also tried going $ab=...$ and then trying to get it from there, that didn't come to fruition either.
trigonometry
New contributor
$endgroup$
add a comment |
$begingroup$
I'm really stuck trying to answer this question and have spent endless hours doing so.
If $a=sin(theta)+cos(phi)$ and, $b=cos(theta)+sin(phi)$, prove that $cos(theta-phi)=frac2aba^2+b^2$.
I've tried working LHS to RHS and couldn't get, I've also tried RHS to LHS and still couldn't get it, and advice or help would be much appreciated please.
I've also tried going $ab=...$ and then trying to get it from there, that didn't come to fruition either.
trigonometry
New contributor
$endgroup$
$begingroup$
Welcome to Math Stack Exchange. Do you know the formula for cosine of a difference?
$endgroup$
– J. W. Tanner
4 hours ago
$begingroup$
Yes, $cos(theta-phi)=cos(theta)cos(phi)+sin(theta)sin(phi)$, and I went much further but was not able to poduce anything useful in the sense of the proof.
$endgroup$
– Avinash Shastri
4 hours ago
$begingroup$
Set $theta=dfracpi2-psi$ and use math.stackexchange.com/questions/1833153/… or math.stackexchange.com/questions/2021356/…
$endgroup$
– lab bhattacharjee
2 hours ago
add a comment |
$begingroup$
I'm really stuck trying to answer this question and have spent endless hours doing so.
If $a=sin(theta)+cos(phi)$ and, $b=cos(theta)+sin(phi)$, prove that $cos(theta-phi)=frac2aba^2+b^2$.
I've tried working LHS to RHS and couldn't get, I've also tried RHS to LHS and still couldn't get it, and advice or help would be much appreciated please.
I've also tried going $ab=...$ and then trying to get it from there, that didn't come to fruition either.
trigonometry
New contributor
$endgroup$
I'm really stuck trying to answer this question and have spent endless hours doing so.
If $a=sin(theta)+cos(phi)$ and, $b=cos(theta)+sin(phi)$, prove that $cos(theta-phi)=frac2aba^2+b^2$.
I've tried working LHS to RHS and couldn't get, I've also tried RHS to LHS and still couldn't get it, and advice or help would be much appreciated please.
I've also tried going $ab=...$ and then trying to get it from there, that didn't come to fruition either.
trigonometry
trigonometry
New contributor
New contributor
New contributor
asked 4 hours ago
Avinash ShastriAvinash Shastri
184
184
New contributor
New contributor
$begingroup$
Welcome to Math Stack Exchange. Do you know the formula for cosine of a difference?
$endgroup$
– J. W. Tanner
4 hours ago
$begingroup$
Yes, $cos(theta-phi)=cos(theta)cos(phi)+sin(theta)sin(phi)$, and I went much further but was not able to poduce anything useful in the sense of the proof.
$endgroup$
– Avinash Shastri
4 hours ago
$begingroup$
Set $theta=dfracpi2-psi$ and use math.stackexchange.com/questions/1833153/… or math.stackexchange.com/questions/2021356/…
$endgroup$
– lab bhattacharjee
2 hours ago
add a comment |
$begingroup$
Welcome to Math Stack Exchange. Do you know the formula for cosine of a difference?
$endgroup$
– J. W. Tanner
4 hours ago
$begingroup$
Yes, $cos(theta-phi)=cos(theta)cos(phi)+sin(theta)sin(phi)$, and I went much further but was not able to poduce anything useful in the sense of the proof.
$endgroup$
– Avinash Shastri
4 hours ago
$begingroup$
Set $theta=dfracpi2-psi$ and use math.stackexchange.com/questions/1833153/… or math.stackexchange.com/questions/2021356/…
$endgroup$
– lab bhattacharjee
2 hours ago
$begingroup$
Welcome to Math Stack Exchange. Do you know the formula for cosine of a difference?
$endgroup$
– J. W. Tanner
4 hours ago
$begingroup$
Welcome to Math Stack Exchange. Do you know the formula for cosine of a difference?
$endgroup$
– J. W. Tanner
4 hours ago
$begingroup$
Yes, $cos(theta-phi)=cos(theta)cos(phi)+sin(theta)sin(phi)$, and I went much further but was not able to poduce anything useful in the sense of the proof.
$endgroup$
– Avinash Shastri
4 hours ago
$begingroup$
Yes, $cos(theta-phi)=cos(theta)cos(phi)+sin(theta)sin(phi)$, and I went much further but was not able to poduce anything useful in the sense of the proof.
$endgroup$
– Avinash Shastri
4 hours ago
$begingroup$
Set $theta=dfracpi2-psi$ and use math.stackexchange.com/questions/1833153/… or math.stackexchange.com/questions/2021356/…
$endgroup$
– lab bhattacharjee
2 hours ago
$begingroup$
Set $theta=dfracpi2-psi$ and use math.stackexchange.com/questions/1833153/… or math.stackexchange.com/questions/2021356/…
$endgroup$
– lab bhattacharjee
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$(i).a=sin(theta)+cos(phi)$$
$$(ii).b=cos(theta)+sin(phi)$$
$$(i)^2+(ii)^2=2+2sin(theta +phi)$$so
$$sin(theta+phi) =(a^2+b^2)over 2-1$$.
$$(i)*(ii)=sin(2theta)+sin(2phi) over 2+cos(theta-phi)=sin(theta+phi)cos(theta-phi)+cos(theta-phi)$$
so$$cos(theta-phi)=abover 1+sin(theta+phi)=2abover a^2+b^2$$
$endgroup$
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Avinash Shastri is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152200%2fhelp-prove-this-basic-trig-identity-please%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$(i).a=sin(theta)+cos(phi)$$
$$(ii).b=cos(theta)+sin(phi)$$
$$(i)^2+(ii)^2=2+2sin(theta +phi)$$so
$$sin(theta+phi) =(a^2+b^2)over 2-1$$.
$$(i)*(ii)=sin(2theta)+sin(2phi) over 2+cos(theta-phi)=sin(theta+phi)cos(theta-phi)+cos(theta-phi)$$
so$$cos(theta-phi)=abover 1+sin(theta+phi)=2abover a^2+b^2$$
$endgroup$
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
add a comment |
$begingroup$
$$(i).a=sin(theta)+cos(phi)$$
$$(ii).b=cos(theta)+sin(phi)$$
$$(i)^2+(ii)^2=2+2sin(theta +phi)$$so
$$sin(theta+phi) =(a^2+b^2)over 2-1$$.
$$(i)*(ii)=sin(2theta)+sin(2phi) over 2+cos(theta-phi)=sin(theta+phi)cos(theta-phi)+cos(theta-phi)$$
so$$cos(theta-phi)=abover 1+sin(theta+phi)=2abover a^2+b^2$$
$endgroup$
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
add a comment |
$begingroup$
$$(i).a=sin(theta)+cos(phi)$$
$$(ii).b=cos(theta)+sin(phi)$$
$$(i)^2+(ii)^2=2+2sin(theta +phi)$$so
$$sin(theta+phi) =(a^2+b^2)over 2-1$$.
$$(i)*(ii)=sin(2theta)+sin(2phi) over 2+cos(theta-phi)=sin(theta+phi)cos(theta-phi)+cos(theta-phi)$$
so$$cos(theta-phi)=abover 1+sin(theta+phi)=2abover a^2+b^2$$
$endgroup$
$$(i).a=sin(theta)+cos(phi)$$
$$(ii).b=cos(theta)+sin(phi)$$
$$(i)^2+(ii)^2=2+2sin(theta +phi)$$so
$$sin(theta+phi) =(a^2+b^2)over 2-1$$.
$$(i)*(ii)=sin(2theta)+sin(2phi) over 2+cos(theta-phi)=sin(theta+phi)cos(theta-phi)+cos(theta-phi)$$
so$$cos(theta-phi)=abover 1+sin(theta+phi)=2abover a^2+b^2$$
answered 3 hours ago
StAKmodStAKmod
406110
406110
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
add a comment |
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
$begingroup$
Wow, thank you, you've made it seem so simple. Was the path intuitive or how did you decide to choose this path?
$endgroup$
– Avinash Shastri
3 hours ago
add a comment |
Avinash Shastri is a new contributor. Be nice, and check out our Code of Conduct.
Avinash Shastri is a new contributor. Be nice, and check out our Code of Conduct.
Avinash Shastri is a new contributor. Be nice, and check out our Code of Conduct.
Avinash Shastri is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152200%2fhelp-prove-this-basic-trig-identity-please%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Welcome to Math Stack Exchange. Do you know the formula for cosine of a difference?
$endgroup$
– J. W. Tanner
4 hours ago
$begingroup$
Yes, $cos(theta-phi)=cos(theta)cos(phi)+sin(theta)sin(phi)$, and I went much further but was not able to poduce anything useful in the sense of the proof.
$endgroup$
– Avinash Shastri
4 hours ago
$begingroup$
Set $theta=dfracpi2-psi$ and use math.stackexchange.com/questions/1833153/… or math.stackexchange.com/questions/2021356/…
$endgroup$
– lab bhattacharjee
2 hours ago