Biased dice probability question Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of dice thrownDice and probabilityDetermine whether the dice is biased based on 10 rollsProbability of events with biased diceProbability of biased diceProbability on biased diceProbability of rolling 2 and 3 numbers in a sequence when rolling 3, 6 sided diceDice probability helpProbability of an “at least” QuestionProbability of biased die.

Biased dice probability question

How can players take actions together that are impossible otherwise?

Problem when applying foreach loop

Should you tell Jews they are breaking a commandment?

Estimated State payment too big --> money back; + 2018 Tax Reform

How should I respond to a player wanting to catch a sword between their hands?

How are presidential pardons supposed to be used?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

I'm having difficulty getting my players to do stuff in a sandbox campaign

Keep going mode for require-package

Geometric mean and geometric standard deviation

Slither Like a Snake

Did the new image of black hole confirm the general theory of relativity?

Can I throw a longsword at someone?

Cold is to Refrigerator as warm is to?

When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?

Blender game recording at the wrong time

Can the prologue be the backstory of your main character?

If I can make up priors, why can't I make up posteriors?

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Array/tabular for long multiplication

What's the point in a preamp?

How is simplicity better than precision and clarity in prose?

Do working physicists consider Newtonian mechanics to be "falsified"?



Biased dice probability question



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of dice thrownDice and probabilityDetermine whether the dice is biased based on 10 rollsProbability of events with biased diceProbability of biased diceProbability on biased diceProbability of rolling 2 and 3 numbers in a sequence when rolling 3, 6 sided diceDice probability helpProbability of an “at least” QuestionProbability of biased die.










4












$begingroup$


A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)










share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    32 mins ago















4












$begingroup$


A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)










share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    32 mins ago













4












4








4


2



$begingroup$


A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)










share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)







probability






share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 41 mins ago









mathpadawan

2,019422




2,019422






New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 45 mins ago









mandymandy

211




211




New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    32 mins ago
















  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    32 mins ago















$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago




$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.



By Cauchy-Schwarz inequality,



$$beginalign*
left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
left(sum_i=1^6 1p_iright)^2\
6left(sum_i=1^6 p_i^2right) &ge 1\
sum_i=1^6 p_i^2 &ge frac16endalign*$$



Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    mandy is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188165%2fbiased-dice-probability-question%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.



    By Cauchy-Schwarz inequality,



    $$beginalign*
    left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
    left(sum_i=1^6 1p_iright)^2\
    6left(sum_i=1^6 p_i^2right) &ge 1\
    sum_i=1^6 p_i^2 &ge frac16endalign*$$



    Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.



      By Cauchy-Schwarz inequality,



      $$beginalign*
      left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
      left(sum_i=1^6 1p_iright)^2\
      6left(sum_i=1^6 p_i^2right) &ge 1\
      sum_i=1^6 p_i^2 &ge frac16endalign*$$



      Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.



        By Cauchy-Schwarz inequality,



        $$beginalign*
        left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
        left(sum_i=1^6 1p_iright)^2\
        6left(sum_i=1^6 p_i^2right) &ge 1\
        sum_i=1^6 p_i^2 &ge frac16endalign*$$



        Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






        share|cite|improve this answer









        $endgroup$



        Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.



        By Cauchy-Schwarz inequality,



        $$beginalign*
        left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
        left(sum_i=1^6 1p_iright)^2\
        6left(sum_i=1^6 p_i^2right) &ge 1\
        sum_i=1^6 p_i^2 &ge frac16endalign*$$



        Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 30 mins ago









        peterwhypeterwhy

        12.3k21229




        12.3k21229




















            mandy is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            mandy is a new contributor. Be nice, and check out our Code of Conduct.












            mandy is a new contributor. Be nice, and check out our Code of Conduct.











            mandy is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188165%2fbiased-dice-probability-question%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

            Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

            Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager