Biased dice probability question Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of dice thrownDice and probabilityDetermine whether the dice is biased based on 10 rollsProbability of events with biased diceProbability of biased diceProbability on biased diceProbability of rolling 2 and 3 numbers in a sequence when rolling 3, 6 sided diceDice probability helpProbability of an “at least” QuestionProbability of biased die.
Biased dice probability question
How can players take actions together that are impossible otherwise?
Problem when applying foreach loop
Should you tell Jews they are breaking a commandment?
Estimated State payment too big --> money back; + 2018 Tax Reform
How should I respond to a player wanting to catch a sword between their hands?
How are presidential pardons supposed to be used?
Is above average number of years spent on PhD considered a red flag in future academia or industry positions?
I'm having difficulty getting my players to do stuff in a sandbox campaign
Keep going mode for require-package
Geometric mean and geometric standard deviation
Slither Like a Snake
Did the new image of black hole confirm the general theory of relativity?
Can I throw a longsword at someone?
Cold is to Refrigerator as warm is to?
When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?
Blender game recording at the wrong time
Can the prologue be the backstory of your main character?
If I can make up priors, why can't I make up posteriors?
What was the last x86 CPU that did not have the x87 floating-point unit built in?
Array/tabular for long multiplication
What's the point in a preamp?
How is simplicity better than precision and clarity in prose?
Do working physicists consider Newtonian mechanics to be "falsified"?
Biased dice probability question
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of dice thrownDice and probabilityDetermine whether the dice is biased based on 10 rollsProbability of events with biased diceProbability of biased diceProbability on biased diceProbability of rolling 2 and 3 numbers in a sequence when rolling 3, 6 sided diceDice probability helpProbability of an “at least” QuestionProbability of biased die.
$begingroup$
A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)
probability
New contributor
$endgroup$
add a comment |
$begingroup$
A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)
probability
New contributor
$endgroup$
$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago
add a comment |
$begingroup$
A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)
probability
New contributor
$endgroup$
A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac16$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)
probability
probability
New contributor
New contributor
edited 41 mins ago
mathpadawan
2,019422
2,019422
New contributor
asked 45 mins ago
mandymandy
211
211
New contributor
New contributor
$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago
add a comment |
$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago
$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago
$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.
By Cauchy-Schwarz inequality,
$$beginalign*
left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
left(sum_i=1^6 1p_iright)^2\
6left(sum_i=1^6 p_i^2right) &ge 1\
sum_i=1^6 p_i^2 &ge frac16endalign*$$
Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
mandy is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188165%2fbiased-dice-probability-question%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.
By Cauchy-Schwarz inequality,
$$beginalign*
left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
left(sum_i=1^6 1p_iright)^2\
6left(sum_i=1^6 p_i^2right) &ge 1\
sum_i=1^6 p_i^2 &ge frac16endalign*$$
Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.
$endgroup$
add a comment |
$begingroup$
Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.
By Cauchy-Schwarz inequality,
$$beginalign*
left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
left(sum_i=1^6 1p_iright)^2\
6left(sum_i=1^6 p_i^2right) &ge 1\
sum_i=1^6 p_i^2 &ge frac16endalign*$$
Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.
$endgroup$
add a comment |
$begingroup$
Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.
By Cauchy-Schwarz inequality,
$$beginalign*
left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
left(sum_i=1^6 1p_iright)^2\
6left(sum_i=1^6 p_i^2right) &ge 1\
sum_i=1^6 p_i^2 &ge frac16endalign*$$
Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.
$endgroup$
Let $p_i$ be the probability of rolling $i$. Then $sum_i=1^6 p_i = 1$.
By Cauchy-Schwarz inequality,
$$beginalign*
left(sum_i=1^6 1^2right) left(sum_i=1^6 p_i^2right) &ge
left(sum_i=1^6 1p_iright)^2\
6left(sum_i=1^6 p_i^2right) &ge 1\
sum_i=1^6 p_i^2 &ge frac16endalign*$$
Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.
answered 30 mins ago
peterwhypeterwhy
12.3k21229
12.3k21229
add a comment |
add a comment |
mandy is a new contributor. Be nice, and check out our Code of Conduct.
mandy is a new contributor. Be nice, and check out our Code of Conduct.
mandy is a new contributor. Be nice, and check out our Code of Conduct.
mandy is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188165%2fbiased-dice-probability-question%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
32 mins ago