How to quickly solve partial fractions equation? The 2019 Stack Overflow Developer Survey Results Are InHow can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?

How do I free up internal storage if I don't have any apps downloaded?

Is it safe to harvest rainwater that fell on solar panels?

Likelihood that a superbug or lethal virus could come from a landfill

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Why doesn't UInt have a toDouble()?

What is the most efficient way to store a numeric range?

Why does the nucleus not repel itself?

Can there be female White Walkers?

What information about me do stores get via my credit card?

How to notate time signature switching consistently every measure

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

Why are there uneven bright areas in this photo of black hole?

Mathematics of imaging the black hole

What is this sharp, curved notch on my knife for?

Button changing its text & action. Good or terrible?

What does もの mean in this sentence?

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past

Does HR tell a hiring manager about salary negotiations?

Can an undergraduate be advised by a professor who is very far away?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

Are there any other methods to apply to solving simultaneous equations?

Is bread bad for ducks?

Are spiders unable to hurt humans, especially very small spiders?



How to quickly solve partial fractions equation?



The 2019 Stack Overflow Developer Survey Results Are InHow can this indefinite integral be solved without partial fractions?Separation of variables and substituion; first integral from the Euler-Differential Equation for the minimal surface problemHow to set up partial fractions?How to solve $int frac,dx(x^3 + x + 1)^3$?How to solve this integral by parts?Integration of rational functions by partial fractionsCompute $int _0 ^infty fracx^alpha1+x^2, mathrm d x$ for $-1<alpha<1$How can $int fracdx(x+a)^2(x+b)^2$ be found?Solve $int frac1cos^2(x)+cos(x)+1dx$How do I solve this trivial complex integral $int^w_0 fracbz(z-a)(z+a)textrmdz$?










2












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago















2












$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago













2












2








2





$begingroup$


Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.










share|cite|improve this question











$endgroup$




Often I am dealing with an integral of let's say:



$$intfracdt(t-2)(t+3)$$



or



$$int fracdtt(t-4)$$



or to make this a more general case in which I am interested the most:



$$int fracdt(t+alpha)(t+beta) quad quad alpha, beta in mathbbR$$



Basically any integral with decomposed polynomial of second degree in the denominator. Obviously this leads to sum of two natural logarithms.



What I do is write down partial fractions equation and then solve system of linear equations (2 variables here):



$$frac1(t+alpha)(t+beta) = fracAt+alpha + fracBt+beta$$



After solving this I end up with some $A, B$ coefficients and I can solve the integral.



Is there faster way to find $A, B$ ? Some algorithm or anything that I can follow and would always work for such case? Surely, solving that does not take much time but I just wonder if it could be done even faster.



(bonus question: what if there were more variables, like 3 variables?)



I would greatly appreciate all feedback as it could help me save countless number of minutes in the future.







calculus integration indefinite-integrals quadratics partial-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







weno

















asked 3 hours ago









wenoweno

42311




42311







  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago












  • 1




    $begingroup$
    Don't you mean find $A,B$? $alpha,beta$ are usually given.
    $endgroup$
    – Eevee Trainer
    3 hours ago










  • $begingroup$
    Yes. Fixed. Thank you!
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
    $endgroup$
    – Eevee Trainer
    3 hours ago







1




1




$begingroup$
Don't you mean find $A,B$? $alpha,beta$ are usually given.
$endgroup$
– Eevee Trainer
3 hours ago




$begingroup$
Don't you mean find $A,B$? $alpha,beta$ are usually given.
$endgroup$
– Eevee Trainer
3 hours ago












$begingroup$
Yes. Fixed. Thank you!
$endgroup$
– weno
3 hours ago




$begingroup$
Yes. Fixed. Thank you!
$endgroup$
– weno
3 hours ago












$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
3 hours ago




$begingroup$
Also when I think about it, I wonder if there's even a general method (beyond the one you referred to). I can see very easily a general solution for when (i) the numerator is $1$ (ii) $alpha ne beta$ (iii) we only have a product of two factors in the denominator, but that's such a narrow set of circumstances that I wonder if it's worth it. Maybe someone has a more general form though.
$endgroup$
– Eevee Trainer
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



$$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



$$1 = A(t + beta) + B(t + alpha)$$



Evaluating $beta$ for $t$:



$$1 = B(alpha - beta)$$



$$B = frac1alpha - beta$$



Similarly, for $A$, sub in $-alpha$:



$$1 = A(beta - alpha)$$



$$A = frac1beta - alpha$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I'll be coming back to this post. This is what I was looking for.
    $endgroup$
    – weno
    3 hours ago










  • $begingroup$
    Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
    $endgroup$
    – weno
    3 hours ago



















1












$begingroup$

If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
$$A_2 = frac 1(3-1)(3+4) = frac114$$



$$A_3=frac 1(-4-1)(-4-3)=frac135$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Here's your answer
    for general $n$.



    $dfrac1prod_k=1^n (x-a_k)
    =sum_k=1^n dfracb_kx-a_k
    $
    .



    Therefore
    $1
    =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
    =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
    $
    .



    Setting
    $x = a_i$
    for each $i$,
    all the terms
    except the one with $k=i$
    have the factor $a_i-a_i$,
    so
    $1 = b_iprod_j=1, jne i^n (a_i-a_j)
    $

    so that
    $b_i
    =dfrac1prod_j=1, jne i^n (a_i-a_j)
    $
    .



    For $n=2$,
    $b_1
    =dfrac1a_1-a_2
    $
    ,
    $b_2
    =dfrac1a_2-a_1
    $
    .



    For $n=3$,
    $b_1
    =dfrac1(a_1-a_2)(a_1-a_3)
    $
    ,
    $b_2
    =dfrac1(a_2-a_1)(a_2-a_3)
    $
    ,
    $b_3
    =dfrac1(a_3-a_1)(a_3-a_2)
    $
    .






    share|cite









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago
















      2












      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago














      2












      2








      2





      $begingroup$

      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$






      share|cite|improve this answer









      $endgroup$



      Unless I am misunderstanding the question, by "root rotation" (when $beta neq alpha$):



      $$frac1(t + alpha)(t + beta) = fracAt + alpha + fracBt + beta$$



      $$1 = A(t + beta) + B(t + alpha)$$



      Evaluating $beta$ for $t$:



      $$1 = B(alpha - beta)$$



      $$B = frac1alpha - beta$$



      Similarly, for $A$, sub in $-alpha$:



      $$1 = A(beta - alpha)$$



      $$A = frac1beta - alpha$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      DairDair

      1,95711124




      1,95711124











      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago

















      • $begingroup$
        I'll be coming back to this post. This is what I was looking for.
        $endgroup$
        – weno
        3 hours ago










      • $begingroup$
        Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
        $endgroup$
        – weno
        3 hours ago
















      $begingroup$
      I'll be coming back to this post. This is what I was looking for.
      $endgroup$
      – weno
      3 hours ago




      $begingroup$
      I'll be coming back to this post. This is what I was looking for.
      $endgroup$
      – weno
      3 hours ago












      $begingroup$
      Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
      $endgroup$
      – weno
      3 hours ago





      $begingroup$
      Unless that takes you too much time, would you be able to derive formulas for $A, B, C$, please? Function of form $frac1(t+alpha)(t+beta)(t+gamma)$ and $alpha neq beta neq gamma$
      $endgroup$
      – weno
      3 hours ago












      1












      $begingroup$

      If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



      Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



      For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
      Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
      $$A_2 = frac 1(3-1)(3+4) = frac114$$



      $$A_3=frac 1(-4-1)(-4-3)=frac135$$






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



        Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



        For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
        Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
        $$A_2 = frac 1(3-1)(3+4) = frac114$$



        $$A_3=frac 1(-4-1)(-4-3)=frac135$$






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



          Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



          For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
          Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
          $$A_2 = frac 1(3-1)(3+4) = frac114$$



          $$A_3=frac 1(-4-1)(-4-3)=frac135$$






          share|cite|improve this answer









          $endgroup$



          If your fraction is in form of $$ frac 1(t-alpha_1)(t-alpha_2)(t-alpha_3)...(t-alpha_k)$$ where the $alpha s$ are different, there is an easy way to find the partial fraction decomposition.



          Let $t=alpha_i$ and cover $(t-alpha_i)$ while evaluating the above fraction to get your $A_i$



          For example $$ frac1(t-1)(t-3)(t+4) = frac A_1(t-1) + frac A_2(t-3) +frac A_3(t+4)$$
          Where $$A_1 = frac 1(1-3)(1+4)=frac-110$$
          $$A_2 = frac 1(3-1)(3+4) = frac114$$



          $$A_3=frac 1(-4-1)(-4-3)=frac135$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Mohammad Riazi-KermaniMohammad Riazi-Kermani

          41.6k42061




          41.6k42061





















              0












              $begingroup$

              Here's your answer
              for general $n$.



              $dfrac1prod_k=1^n (x-a_k)
              =sum_k=1^n dfracb_kx-a_k
              $
              .



              Therefore
              $1
              =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
              =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
              $
              .



              Setting
              $x = a_i$
              for each $i$,
              all the terms
              except the one with $k=i$
              have the factor $a_i-a_i$,
              so
              $1 = b_iprod_j=1, jne i^n (a_i-a_j)
              $

              so that
              $b_i
              =dfrac1prod_j=1, jne i^n (a_i-a_j)
              $
              .



              For $n=2$,
              $b_1
              =dfrac1a_1-a_2
              $
              ,
              $b_2
              =dfrac1a_2-a_1
              $
              .



              For $n=3$,
              $b_1
              =dfrac1(a_1-a_2)(a_1-a_3)
              $
              ,
              $b_2
              =dfrac1(a_2-a_1)(a_2-a_3)
              $
              ,
              $b_3
              =dfrac1(a_3-a_1)(a_3-a_2)
              $
              .






              share|cite









              $endgroup$

















                0












                $begingroup$

                Here's your answer
                for general $n$.



                $dfrac1prod_k=1^n (x-a_k)
                =sum_k=1^n dfracb_kx-a_k
                $
                .



                Therefore
                $1
                =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                $
                .



                Setting
                $x = a_i$
                for each $i$,
                all the terms
                except the one with $k=i$
                have the factor $a_i-a_i$,
                so
                $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                $

                so that
                $b_i
                =dfrac1prod_j=1, jne i^n (a_i-a_j)
                $
                .



                For $n=2$,
                $b_1
                =dfrac1a_1-a_2
                $
                ,
                $b_2
                =dfrac1a_2-a_1
                $
                .



                For $n=3$,
                $b_1
                =dfrac1(a_1-a_2)(a_1-a_3)
                $
                ,
                $b_2
                =dfrac1(a_2-a_1)(a_2-a_3)
                $
                ,
                $b_3
                =dfrac1(a_3-a_1)(a_3-a_2)
                $
                .






                share|cite









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Here's your answer
                  for general $n$.



                  $dfrac1prod_k=1^n (x-a_k)
                  =sum_k=1^n dfracb_kx-a_k
                  $
                  .



                  Therefore
                  $1
                  =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                  =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                  $
                  .



                  Setting
                  $x = a_i$
                  for each $i$,
                  all the terms
                  except the one with $k=i$
                  have the factor $a_i-a_i$,
                  so
                  $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                  $

                  so that
                  $b_i
                  =dfrac1prod_j=1, jne i^n (a_i-a_j)
                  $
                  .



                  For $n=2$,
                  $b_1
                  =dfrac1a_1-a_2
                  $
                  ,
                  $b_2
                  =dfrac1a_2-a_1
                  $
                  .



                  For $n=3$,
                  $b_1
                  =dfrac1(a_1-a_2)(a_1-a_3)
                  $
                  ,
                  $b_2
                  =dfrac1(a_2-a_1)(a_2-a_3)
                  $
                  ,
                  $b_3
                  =dfrac1(a_3-a_1)(a_3-a_2)
                  $
                  .






                  share|cite









                  $endgroup$



                  Here's your answer
                  for general $n$.



                  $dfrac1prod_k=1^n (x-a_k)
                  =sum_k=1^n dfracb_kx-a_k
                  $
                  .



                  Therefore
                  $1
                  =sum_k=1^n dfracb_kprod_j=1^n (x-a_j)x-a_k
                  =sum_k=1^n b_kprod_j=1, jne k^n (x-a_j)
                  $
                  .



                  Setting
                  $x = a_i$
                  for each $i$,
                  all the terms
                  except the one with $k=i$
                  have the factor $a_i-a_i$,
                  so
                  $1 = b_iprod_j=1, jne i^n (a_i-a_j)
                  $

                  so that
                  $b_i
                  =dfrac1prod_j=1, jne i^n (a_i-a_j)
                  $
                  .



                  For $n=2$,
                  $b_1
                  =dfrac1a_1-a_2
                  $
                  ,
                  $b_2
                  =dfrac1a_2-a_1
                  $
                  .



                  For $n=3$,
                  $b_1
                  =dfrac1(a_1-a_2)(a_1-a_3)
                  $
                  ,
                  $b_2
                  =dfrac1(a_2-a_1)(a_2-a_3)
                  $
                  ,
                  $b_3
                  =dfrac1(a_3-a_1)(a_3-a_2)
                  $
                  .







                  share|cite












                  share|cite



                  share|cite










                  answered 8 mins ago









                  marty cohenmarty cohen

                  75.3k549130




                  75.3k549130



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184487%2fhow-to-quickly-solve-partial-fractions-equation%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                      Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                      Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager