Why does this cyclic subgroup have only 4 subgroups?What does it mean to have no proper non-trivial subgroupCyclic subgroup of a cyclic groupProof on Cyclic Subgroup GenerationIf $G$ has only 2 non-trivial proper subgroups H, N, then H, N are cyclic subgroup of $G$.Number of cyclic subgroups of the alternating group $A_8$All groups of order 10 have a proper normal subgroupHow many subgroups of order 17 does $S_17$ have?Why do Sylow $3$-subgroups intersect only in the identity?Group with proper subgroups infinite cyclicHow many noncyclic submodules with $9$ elements does $V$ have?

iPad being using in wall mount battery swollen

Is it inappropriate for a student to attend their mentor's dissertation defense?

In 'Revenger,' what does 'cove' come from?

Is it logically or scientifically possible to artificially send energy to the body?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

Is it possible to create a QR code using text?

Forgetting the musical notes while performing in concert

Valid term from quadratic sequence?

How could indestructible materials be used in power generation?

Why can't we play rap on piano?

How writing a dominant 7 sus4 chord in RNA ( Vsus7 chord in the 1st inversion)

Cursor Replacement for Newbies

Unlock My Phone! February 2018

Can compressed videos be decoded back to their uncompresed original format?

Short story with a alien planet, government officials must wear exploding medallions

What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?

Probability that a draw from a normal distribution is some number greater than another draw from the same distribution

What do you call someone who asks many questions?

Extract rows of a table, that include less than x NULLs

How can saying a song's name be a copyright violation?

Would Slavery Reparations be considered Bills of Attainder and hence Illegal?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Detention in 1997

What is a romance in Latin?



Why does this cyclic subgroup have only 4 subgroups?


What does it mean to have no proper non-trivial subgroupCyclic subgroup of a cyclic groupProof on Cyclic Subgroup GenerationIf $G$ has only 2 non-trivial proper subgroups H, N, then H, N are cyclic subgroup of $G$.Number of cyclic subgroups of the alternating group $A_8$All groups of order 10 have a proper normal subgroupHow many subgroups of order 17 does $S_17$ have?Why do Sylow $3$-subgroups intersect only in the identity?Group with proper subgroups infinite cyclicHow many noncyclic submodules with $9$ elements does $V$ have?













1












$begingroup$


Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    3 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    3 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    3 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    1 hour ago















1












$begingroup$


Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    3 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    3 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    3 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    1 hour ago













1












1








1





$begingroup$


Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?










share|cite|improve this question











$endgroup$




Let the cyclic group have 6 elements and be denoted as $G = 1, a, a^2, a^3, a^4, a^5$ where $a^6 = 1$.



Besides the trivial subgroup 1 and the entire subgroup G, my textbook says there are only two other subgroups, $1, a^2, a^4$ and $1, a^3$.



Why isnt $1, a^5$ a subgroup? Is it because $a^5$ has no inverse? If so, then what is the inverse of $a^3$?




There should be an element, $b$ such that $a^3 cdot b = 1$. The only reasoning I can think of is that if $b = a^3$, then $a^3 cdot a^3 = a^6 = 1$ only because $a^6 =1$ was explicitly stated.



If $a^5 cdot b = 1$ is true, then $b$ would have to be $a^-5$ or $a^10$, where it is explicitly stated that $a^10 = 1$ as well.



Is my thought process correct?







abstract-algebra group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









J. W. Tanner

4,3651320




4,3651320










asked 3 hours ago









Evan KimEvan Kim

66319




66319











  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    3 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    3 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    3 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    1 hour ago
















  • $begingroup$
    The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
    $endgroup$
    – Minus One-Twelfth
    3 hours ago











  • $begingroup$
    why? Could you help me understand how you got to that conclusion?
    $endgroup$
    – Evan Kim
    3 hours ago






  • 2




    $begingroup$
    $1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
    $endgroup$
    – J. W. Tanner
    3 hours ago











  • $begingroup$
    The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
    $endgroup$
    – Minus One-Twelfth
    1 hour ago















$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
3 hours ago





$begingroup$
The inverse of $a^3$ is itself ($a^3$). The inverse of $a^5$ is $a$.
$endgroup$
– Minus One-Twelfth
3 hours ago













$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
3 hours ago




$begingroup$
why? Could you help me understand how you got to that conclusion?
$endgroup$
– Evan Kim
3 hours ago




2




2




$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
3 hours ago





$begingroup$
$1,a^5$ is not a subgroup because it is not closed; it does not contain $a^5a^5=a^10=a^4$
$endgroup$
– J. W. Tanner
3 hours ago













$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago




$begingroup$
The inverse of $a^5$ is $a$ because $a^5cdot a = 1$ (since $a^5cdot a = a^6$, which we are told is $1$).
$endgroup$
– Minus One-Twelfth
1 hour ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

$[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    $lbrace 1, a^5 rbrace$ is not a subgroup because
    $$a^5 . a^5 = a^4$$
    is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



      It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




        To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






        share|cite|improve this answer









        $endgroup$












        • $begingroup$
          Why the downvote?
          $endgroup$
          – Shaun
          2 hours ago











        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173761%2fwhy-does-this-cyclic-subgroup-have-only-4-subgroups%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



        But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






        share|cite|improve this answer









        $endgroup$

















          2












          $begingroup$

          $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



          But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






          share|cite|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



            But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.






            share|cite|improve this answer









            $endgroup$



            $[1,a^5] $ is not a subgroup because $a^5cdot a^5=a^4$ which is not in the set $[1,a^5]$



            But in a subgroup , with two elements $a,b$ , the product $ab$ must be in the subgroup as well.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 3 hours ago









            PeterPeter

            49k1240137




            49k1240137





















                2












                $begingroup$

                $lbrace 1, a^5 rbrace$ is not a subgroup because
                $$a^5 . a^5 = a^4$$
                is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  $lbrace 1, a^5 rbrace$ is not a subgroup because
                  $$a^5 . a^5 = a^4$$
                  is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    $lbrace 1, a^5 rbrace$ is not a subgroup because
                    $$a^5 . a^5 = a^4$$
                    is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.






                    share|cite|improve this answer









                    $endgroup$



                    $lbrace 1, a^5 rbrace$ is not a subgroup because
                    $$a^5 . a^5 = a^4$$
                    is not an element of $lbrace 1, a^5 rbrace$. So $lbrace 1, a^5 rbrace$ is not stable for the intern law of the group.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 3 hours ago









                    TheSilverDoeTheSilverDoe

                    5,157215




                    5,157215





















                        1












                        $begingroup$

                        Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                        It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                          It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                            It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.






                            share|cite|improve this answer









                            $endgroup$



                            Since nobody said it I'll also add that we know from the Fundamental Theorem of Cyclic Groups that for a finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and there is exactly one subgroup for each divisor. So to find the number of cyclic groups for a group of order $n$, just count the divisors of $n$. Here there are $4$ divisors of $6$, and so these must be all the subgroups.



                            It is also true that if $a$ is an element of order $n$ in a group and $k$ is a positive integer. Then $langle a^k rangle = langle a^gcd(n,k) rangle$. Where $langle a rangle$ denotes the group generated by $a$. Since $gcd(5,6) = 1$, we know that the group generated by $a^5$ is the same as the group generated by $a$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 hours ago









                            Jack PfaffingerJack Pfaffinger

                            3841112




                            3841112





















                                0












                                $begingroup$

                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






                                share|cite|improve this answer









                                $endgroup$












                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  2 hours ago















                                0












                                $begingroup$

                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






                                share|cite|improve this answer









                                $endgroup$












                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  2 hours ago













                                0












                                0








                                0





                                $begingroup$

                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.






                                share|cite|improve this answer









                                $endgroup$



                                Hint: Prove that subgroups of cyclic groups are themselves cyclic. Then use Lagrange's Theorem.




                                To address your misunderstanding: if $gin H$ for some $Hle G$, then all powers of $g$ are in $H$.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered 2 hours ago









                                ShaunShaun

                                10.1k113685




                                10.1k113685











                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  2 hours ago
















                                • $begingroup$
                                  Why the downvote?
                                  $endgroup$
                                  – Shaun
                                  2 hours ago















                                $begingroup$
                                Why the downvote?
                                $endgroup$
                                – Shaun
                                2 hours ago




                                $begingroup$
                                Why the downvote?
                                $endgroup$
                                – Shaun
                                2 hours ago

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3173761%2fwhy-does-this-cyclic-subgroup-have-only-4-subgroups%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                                Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                                Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager