Method to test if a number is a perfect power?Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers

Applicability of Single Responsibility Principle

Sequence of Tenses: Translating the subjunctive

How do I find the solutions of the following equation?

Is the destination of a commercial flight important for the pilot?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

How do we know the LHC results are robust?

India just shot down a satellite from the ground. At what altitude range is the resulting debris field?

Is this version of a gravity generator feasible?

Was Spock the First Vulcan in Starfleet?

What Brexit proposals are on the table in the indicative votes on the 27th of March 2019?

Why escape if the_content isnt?

Avoiding estate tax by giving multiple gifts

Is this apparent Class Action settlement a spam message?

How does Loki do this?

How to be diplomatic in refusing to write code that breaches the privacy of our users

How to Reset Passwords on Multiple Websites Easily?

What is the intuitive meaning of having a linear relationship between the logs of two variables?

Sort a list by elements of another list

How do scammers retract money, while you can’t?

Anatomically Correct Strange Women In Ponds Distributing Swords

Trouble understanding the speech of overseas colleagues

Why, precisely, is argon used in neutrino experiments?

Failed to fetch jessie backports repository

Class Action - which options I have?



Method to test if a number is a perfect power?


Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers













4












$begingroup$


Is there a general method for testing numbers to see if they are perfect $n$th powers?



For example, suppose that I did not know that $121$ was a perfect square. A naive test in a code might be to see if
$$lfloorsqrt121rfloor=sqrt121$$



But I imagine there are much more efficient ways of doing this (if I'm working with numbers with many digits).










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    One very cheap, necessary condition is that $x^2pmod 4equiv 0,1$.
    $endgroup$
    – Alex R.
    1 hour ago










  • $begingroup$
    Are you given numbers $k$ and $n$ and asked to check whether $k$ is an $n$-th power? Or are you given just $k$ and asked to check whether $k$ is a perfect power?
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes, I was considering the first case, where I know both k and n and trying to see if $k = a^n,$ a a positive integer.
    $endgroup$
    – D.B.
    1 hour ago










  • $begingroup$
    Wait, @Alex R. Looking at your first comment, what about $x^2 = 40 = 0 (mod 4)$. Yet, $40$ is not a perfect square.
    $endgroup$
    – D.B.
    1 hour ago






  • 2




    $begingroup$
    @D.B.: Hence it's a necessary condition: if $x^2$ is a perfect square, then $x^2equiv 0,1pmod4$. The other direction gives: if $yequiv 2,3pmod4$, then $y$ cannot be a perfect square.
    $endgroup$
    – Alex R.
    1 hour ago
















4












$begingroup$


Is there a general method for testing numbers to see if they are perfect $n$th powers?



For example, suppose that I did not know that $121$ was a perfect square. A naive test in a code might be to see if
$$lfloorsqrt121rfloor=sqrt121$$



But I imagine there are much more efficient ways of doing this (if I'm working with numbers with many digits).










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    One very cheap, necessary condition is that $x^2pmod 4equiv 0,1$.
    $endgroup$
    – Alex R.
    1 hour ago










  • $begingroup$
    Are you given numbers $k$ and $n$ and asked to check whether $k$ is an $n$-th power? Or are you given just $k$ and asked to check whether $k$ is a perfect power?
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes, I was considering the first case, where I know both k and n and trying to see if $k = a^n,$ a a positive integer.
    $endgroup$
    – D.B.
    1 hour ago










  • $begingroup$
    Wait, @Alex R. Looking at your first comment, what about $x^2 = 40 = 0 (mod 4)$. Yet, $40$ is not a perfect square.
    $endgroup$
    – D.B.
    1 hour ago






  • 2




    $begingroup$
    @D.B.: Hence it's a necessary condition: if $x^2$ is a perfect square, then $x^2equiv 0,1pmod4$. The other direction gives: if $yequiv 2,3pmod4$, then $y$ cannot be a perfect square.
    $endgroup$
    – Alex R.
    1 hour ago














4












4








4


2



$begingroup$


Is there a general method for testing numbers to see if they are perfect $n$th powers?



For example, suppose that I did not know that $121$ was a perfect square. A naive test in a code might be to see if
$$lfloorsqrt121rfloor=sqrt121$$



But I imagine there are much more efficient ways of doing this (if I'm working with numbers with many digits).










share|cite|improve this question











$endgroup$




Is there a general method for testing numbers to see if they are perfect $n$th powers?



For example, suppose that I did not know that $121$ was a perfect square. A naive test in a code might be to see if
$$lfloorsqrt121rfloor=sqrt121$$



But I imagine there are much more efficient ways of doing this (if I'm working with numbers with many digits).







number-theory perfect-powers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Chase Ryan Taylor

4,45021531




4,45021531










asked 2 hours ago









D.B.D.B.

1,29518




1,29518







  • 1




    $begingroup$
    One very cheap, necessary condition is that $x^2pmod 4equiv 0,1$.
    $endgroup$
    – Alex R.
    1 hour ago










  • $begingroup$
    Are you given numbers $k$ and $n$ and asked to check whether $k$ is an $n$-th power? Or are you given just $k$ and asked to check whether $k$ is a perfect power?
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes, I was considering the first case, where I know both k and n and trying to see if $k = a^n,$ a a positive integer.
    $endgroup$
    – D.B.
    1 hour ago










  • $begingroup$
    Wait, @Alex R. Looking at your first comment, what about $x^2 = 40 = 0 (mod 4)$. Yet, $40$ is not a perfect square.
    $endgroup$
    – D.B.
    1 hour ago






  • 2




    $begingroup$
    @D.B.: Hence it's a necessary condition: if $x^2$ is a perfect square, then $x^2equiv 0,1pmod4$. The other direction gives: if $yequiv 2,3pmod4$, then $y$ cannot be a perfect square.
    $endgroup$
    – Alex R.
    1 hour ago













  • 1




    $begingroup$
    One very cheap, necessary condition is that $x^2pmod 4equiv 0,1$.
    $endgroup$
    – Alex R.
    1 hour ago










  • $begingroup$
    Are you given numbers $k$ and $n$ and asked to check whether $k$ is an $n$-th power? Or are you given just $k$ and asked to check whether $k$ is a perfect power?
    $endgroup$
    – Servaes
    1 hour ago










  • $begingroup$
    @Servaes, I was considering the first case, where I know both k and n and trying to see if $k = a^n,$ a a positive integer.
    $endgroup$
    – D.B.
    1 hour ago










  • $begingroup$
    Wait, @Alex R. Looking at your first comment, what about $x^2 = 40 = 0 (mod 4)$. Yet, $40$ is not a perfect square.
    $endgroup$
    – D.B.
    1 hour ago






  • 2




    $begingroup$
    @D.B.: Hence it's a necessary condition: if $x^2$ is a perfect square, then $x^2equiv 0,1pmod4$. The other direction gives: if $yequiv 2,3pmod4$, then $y$ cannot be a perfect square.
    $endgroup$
    – Alex R.
    1 hour ago








1




1




$begingroup$
One very cheap, necessary condition is that $x^2pmod 4equiv 0,1$.
$endgroup$
– Alex R.
1 hour ago




$begingroup$
One very cheap, necessary condition is that $x^2pmod 4equiv 0,1$.
$endgroup$
– Alex R.
1 hour ago












$begingroup$
Are you given numbers $k$ and $n$ and asked to check whether $k$ is an $n$-th power? Or are you given just $k$ and asked to check whether $k$ is a perfect power?
$endgroup$
– Servaes
1 hour ago




$begingroup$
Are you given numbers $k$ and $n$ and asked to check whether $k$ is an $n$-th power? Or are you given just $k$ and asked to check whether $k$ is a perfect power?
$endgroup$
– Servaes
1 hour ago












$begingroup$
@Servaes, I was considering the first case, where I know both k and n and trying to see if $k = a^n,$ a a positive integer.
$endgroup$
– D.B.
1 hour ago




$begingroup$
@Servaes, I was considering the first case, where I know both k and n and trying to see if $k = a^n,$ a a positive integer.
$endgroup$
– D.B.
1 hour ago












$begingroup$
Wait, @Alex R. Looking at your first comment, what about $x^2 = 40 = 0 (mod 4)$. Yet, $40$ is not a perfect square.
$endgroup$
– D.B.
1 hour ago




$begingroup$
Wait, @Alex R. Looking at your first comment, what about $x^2 = 40 = 0 (mod 4)$. Yet, $40$ is not a perfect square.
$endgroup$
– D.B.
1 hour ago




2




2




$begingroup$
@D.B.: Hence it's a necessary condition: if $x^2$ is a perfect square, then $x^2equiv 0,1pmod4$. The other direction gives: if $yequiv 2,3pmod4$, then $y$ cannot be a perfect square.
$endgroup$
– Alex R.
1 hour ago





$begingroup$
@D.B.: Hence it's a necessary condition: if $x^2$ is a perfect square, then $x^2equiv 0,1pmod4$. The other direction gives: if $yequiv 2,3pmod4$, then $y$ cannot be a perfect square.
$endgroup$
– Alex R.
1 hour ago











5 Answers
5






active

oldest

votes


















6












$begingroup$

See Detecting perfect powers in essentially linear time - Daniel J. Bernstein:



https://cr.yp.to/papers/powers-ams.pdf






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    My suggestion on a computer is to run a root finder.



    Given a value $y$, one way is to hard-code the first couple and then use an integer-valued binary search starting with $y/2$, which is logarithmic in $y$ and thus linear (since input takes $ln y$.



    You can also write down the Newton's method recurrence and see if it converges to an integer or not, should become clear after the first couple of steps, once the error becomes small enough.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      I don't think it's linear, given that you need to square the proposed number at every split.
      $endgroup$
      – Alex R.
      1 hour ago



















    0












    $begingroup$

    In the specific case where you already know not only the number being checked but also the power, as the question's comment by the OP to Servaes states, then you have something like



    $$k = a^n tag1labeleq1$$



    where $k$ and $n$ are known integers, but with $a$ being an unknown value to check whether or not it's an integer. In this case, taking natural logarithms of both sides (you could use any base, but I suspect that implementation wise $e$ will likely at least be the fastest one, if not also the most accurate) gives



    $$ln(k) = nln(a) ; Rightarrow ; ln(a) = fracln(k)n ; Rightarrow ; a = e^fracln(k)n tag2labeleq2$$



    On a computer, this will give a floating point value that would be, even for large values of $k$, relatively close to the correct value of $a$.



    You can now use any number of algorithms to relatively quickly & easily determine $a$ if it's an integer, or show it's not an integer. For example, you can start with the integer part obtained in eqrefeq2, call it $a_1$, to determine $k_1$. If $k_1$ is not correct, then if it's less than $k$, check $a_2 = a_1 + 1$, else check $a_2 = a_1 - 1$, and call the new result $k_2$. If $k_2$ is still not correct, add or subtract the integer amount (making sure it's at least 1) of $left|frack -k_2k_1 - k_2right|$ to $a_2$ to get a new $a_1$ value to check. Then repeat these steps as many times as needed. In almost all cases, I believe it should take very loops to find the correct value. However, note you should also include checks in case there is no such integer $a$, with this usually being seen when one integer value gives a lower result & the next higher gives a higher result (or higher result & next lower integer gives a lower result).






    share|cite|improve this answer











    $endgroup$




















      0












      $begingroup$

      There are many powerful codes that factorize a number to its prime factors in a non-polynomial time (for more information you can refer to Integer Factorization on Wikipedia) . Once an integer was factorized as follows$$n=p_1^alpha_1times p_2^alpha_2timescdots times p_m^alpha_m$$then by defining $d=gcd(alpha_1,alpha_2,cdots ,alpha_m)$ we can say that $n$ is a full $d$-th power.






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
        $endgroup$
        – gt6989b
        1 hour ago






      • 2




        $begingroup$
        For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
        $endgroup$
        – Arturo Magidin
        1 hour ago










      • $begingroup$
        This is orders-of-magnitude slower than just computing the square-root even by classical methods.
        $endgroup$
        – Alex R.
        1 hour ago










      • $begingroup$
        I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
        $endgroup$
        – MPW
        1 hour ago










      • $begingroup$
        I mean the most efficient that is possible so far
        $endgroup$
        – Mostafa Ayaz
        1 hour ago


















      0












      $begingroup$

      It is at least possible to do this in polynomial time. Assume $n$ is a $k$-bit number and you want to find positive integers $a$ and $b$ such that $$a^b=ntag1$$ or prove that such numbers don't exists.



      We have $$n<2^k$$ because $n$ is a $k$-bit number and so $$blt k$$



      We can simply check for all possible $b$ if there is an $a$ such that $(1)$ holds. For given $b$ we can try to find $a$ by bisection. This bisection checks $O(log n)=O(k)$ different $a$. A check is the calculation of $a^b$. This can be achieved by multiplying powers of $a$ by $a$. These powers of $a$ are smaller than $n$. So we multiply $k$-bit numbers at most $b(lt k)$ times. A multiplication of two $k$-bit numbers needs $O(k^2)$ time. So all in all the algorithm needs $O(k^2)$ multiplications o $k$-bit numbers, which means $O(k^4)$ time.






      share|cite|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165146%2fmethod-to-test-if-a-number-is-a-perfect-power%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        6












        $begingroup$

        See Detecting perfect powers in essentially linear time - Daniel J. Bernstein:



        https://cr.yp.to/papers/powers-ams.pdf






        share|cite|improve this answer









        $endgroup$

















          6












          $begingroup$

          See Detecting perfect powers in essentially linear time - Daniel J. Bernstein:



          https://cr.yp.to/papers/powers-ams.pdf






          share|cite|improve this answer









          $endgroup$















            6












            6








            6





            $begingroup$

            See Detecting perfect powers in essentially linear time - Daniel J. Bernstein:



            https://cr.yp.to/papers/powers-ams.pdf






            share|cite|improve this answer









            $endgroup$



            See Detecting perfect powers in essentially linear time - Daniel J. Bernstein:



            https://cr.yp.to/papers/powers-ams.pdf







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            Alex J BestAlex J Best

            2,32611226




            2,32611226





















                0












                $begingroup$

                My suggestion on a computer is to run a root finder.



                Given a value $y$, one way is to hard-code the first couple and then use an integer-valued binary search starting with $y/2$, which is logarithmic in $y$ and thus linear (since input takes $ln y$.



                You can also write down the Newton's method recurrence and see if it converges to an integer or not, should become clear after the first couple of steps, once the error becomes small enough.






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  I don't think it's linear, given that you need to square the proposed number at every split.
                  $endgroup$
                  – Alex R.
                  1 hour ago
















                0












                $begingroup$

                My suggestion on a computer is to run a root finder.



                Given a value $y$, one way is to hard-code the first couple and then use an integer-valued binary search starting with $y/2$, which is logarithmic in $y$ and thus linear (since input takes $ln y$.



                You can also write down the Newton's method recurrence and see if it converges to an integer or not, should become clear after the first couple of steps, once the error becomes small enough.






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  I don't think it's linear, given that you need to square the proposed number at every split.
                  $endgroup$
                  – Alex R.
                  1 hour ago














                0












                0








                0





                $begingroup$

                My suggestion on a computer is to run a root finder.



                Given a value $y$, one way is to hard-code the first couple and then use an integer-valued binary search starting with $y/2$, which is logarithmic in $y$ and thus linear (since input takes $ln y$.



                You can also write down the Newton's method recurrence and see if it converges to an integer or not, should become clear after the first couple of steps, once the error becomes small enough.






                share|cite|improve this answer









                $endgroup$



                My suggestion on a computer is to run a root finder.



                Given a value $y$, one way is to hard-code the first couple and then use an integer-valued binary search starting with $y/2$, which is logarithmic in $y$ and thus linear (since input takes $ln y$.



                You can also write down the Newton's method recurrence and see if it converges to an integer or not, should become clear after the first couple of steps, once the error becomes small enough.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                gt6989bgt6989b

                35.1k22557




                35.1k22557











                • $begingroup$
                  I don't think it's linear, given that you need to square the proposed number at every split.
                  $endgroup$
                  – Alex R.
                  1 hour ago

















                • $begingroup$
                  I don't think it's linear, given that you need to square the proposed number at every split.
                  $endgroup$
                  – Alex R.
                  1 hour ago
















                $begingroup$
                I don't think it's linear, given that you need to square the proposed number at every split.
                $endgroup$
                – Alex R.
                1 hour ago





                $begingroup$
                I don't think it's linear, given that you need to square the proposed number at every split.
                $endgroup$
                – Alex R.
                1 hour ago












                0












                $begingroup$

                In the specific case where you already know not only the number being checked but also the power, as the question's comment by the OP to Servaes states, then you have something like



                $$k = a^n tag1labeleq1$$



                where $k$ and $n$ are known integers, but with $a$ being an unknown value to check whether or not it's an integer. In this case, taking natural logarithms of both sides (you could use any base, but I suspect that implementation wise $e$ will likely at least be the fastest one, if not also the most accurate) gives



                $$ln(k) = nln(a) ; Rightarrow ; ln(a) = fracln(k)n ; Rightarrow ; a = e^fracln(k)n tag2labeleq2$$



                On a computer, this will give a floating point value that would be, even for large values of $k$, relatively close to the correct value of $a$.



                You can now use any number of algorithms to relatively quickly & easily determine $a$ if it's an integer, or show it's not an integer. For example, you can start with the integer part obtained in eqrefeq2, call it $a_1$, to determine $k_1$. If $k_1$ is not correct, then if it's less than $k$, check $a_2 = a_1 + 1$, else check $a_2 = a_1 - 1$, and call the new result $k_2$. If $k_2$ is still not correct, add or subtract the integer amount (making sure it's at least 1) of $left|frack -k_2k_1 - k_2right|$ to $a_2$ to get a new $a_1$ value to check. Then repeat these steps as many times as needed. In almost all cases, I believe it should take very loops to find the correct value. However, note you should also include checks in case there is no such integer $a$, with this usually being seen when one integer value gives a lower result & the next higher gives a higher result (or higher result & next lower integer gives a lower result).






                share|cite|improve this answer











                $endgroup$

















                  0












                  $begingroup$

                  In the specific case where you already know not only the number being checked but also the power, as the question's comment by the OP to Servaes states, then you have something like



                  $$k = a^n tag1labeleq1$$



                  where $k$ and $n$ are known integers, but with $a$ being an unknown value to check whether or not it's an integer. In this case, taking natural logarithms of both sides (you could use any base, but I suspect that implementation wise $e$ will likely at least be the fastest one, if not also the most accurate) gives



                  $$ln(k) = nln(a) ; Rightarrow ; ln(a) = fracln(k)n ; Rightarrow ; a = e^fracln(k)n tag2labeleq2$$



                  On a computer, this will give a floating point value that would be, even for large values of $k$, relatively close to the correct value of $a$.



                  You can now use any number of algorithms to relatively quickly & easily determine $a$ if it's an integer, or show it's not an integer. For example, you can start with the integer part obtained in eqrefeq2, call it $a_1$, to determine $k_1$. If $k_1$ is not correct, then if it's less than $k$, check $a_2 = a_1 + 1$, else check $a_2 = a_1 - 1$, and call the new result $k_2$. If $k_2$ is still not correct, add or subtract the integer amount (making sure it's at least 1) of $left|frack -k_2k_1 - k_2right|$ to $a_2$ to get a new $a_1$ value to check. Then repeat these steps as many times as needed. In almost all cases, I believe it should take very loops to find the correct value. However, note you should also include checks in case there is no such integer $a$, with this usually being seen when one integer value gives a lower result & the next higher gives a higher result (or higher result & next lower integer gives a lower result).






                  share|cite|improve this answer











                  $endgroup$















                    0












                    0








                    0





                    $begingroup$

                    In the specific case where you already know not only the number being checked but also the power, as the question's comment by the OP to Servaes states, then you have something like



                    $$k = a^n tag1labeleq1$$



                    where $k$ and $n$ are known integers, but with $a$ being an unknown value to check whether or not it's an integer. In this case, taking natural logarithms of both sides (you could use any base, but I suspect that implementation wise $e$ will likely at least be the fastest one, if not also the most accurate) gives



                    $$ln(k) = nln(a) ; Rightarrow ; ln(a) = fracln(k)n ; Rightarrow ; a = e^fracln(k)n tag2labeleq2$$



                    On a computer, this will give a floating point value that would be, even for large values of $k$, relatively close to the correct value of $a$.



                    You can now use any number of algorithms to relatively quickly & easily determine $a$ if it's an integer, or show it's not an integer. For example, you can start with the integer part obtained in eqrefeq2, call it $a_1$, to determine $k_1$. If $k_1$ is not correct, then if it's less than $k$, check $a_2 = a_1 + 1$, else check $a_2 = a_1 - 1$, and call the new result $k_2$. If $k_2$ is still not correct, add or subtract the integer amount (making sure it's at least 1) of $left|frack -k_2k_1 - k_2right|$ to $a_2$ to get a new $a_1$ value to check. Then repeat these steps as many times as needed. In almost all cases, I believe it should take very loops to find the correct value. However, note you should also include checks in case there is no such integer $a$, with this usually being seen when one integer value gives a lower result & the next higher gives a higher result (or higher result & next lower integer gives a lower result).






                    share|cite|improve this answer











                    $endgroup$



                    In the specific case where you already know not only the number being checked but also the power, as the question's comment by the OP to Servaes states, then you have something like



                    $$k = a^n tag1labeleq1$$



                    where $k$ and $n$ are known integers, but with $a$ being an unknown value to check whether or not it's an integer. In this case, taking natural logarithms of both sides (you could use any base, but I suspect that implementation wise $e$ will likely at least be the fastest one, if not also the most accurate) gives



                    $$ln(k) = nln(a) ; Rightarrow ; ln(a) = fracln(k)n ; Rightarrow ; a = e^fracln(k)n tag2labeleq2$$



                    On a computer, this will give a floating point value that would be, even for large values of $k$, relatively close to the correct value of $a$.



                    You can now use any number of algorithms to relatively quickly & easily determine $a$ if it's an integer, or show it's not an integer. For example, you can start with the integer part obtained in eqrefeq2, call it $a_1$, to determine $k_1$. If $k_1$ is not correct, then if it's less than $k$, check $a_2 = a_1 + 1$, else check $a_2 = a_1 - 1$, and call the new result $k_2$. If $k_2$ is still not correct, add or subtract the integer amount (making sure it's at least 1) of $left|frack -k_2k_1 - k_2right|$ to $a_2$ to get a new $a_1$ value to check. Then repeat these steps as many times as needed. In almost all cases, I believe it should take very loops to find the correct value. However, note you should also include checks in case there is no such integer $a$, with this usually being seen when one integer value gives a lower result & the next higher gives a higher result (or higher result & next lower integer gives a lower result).







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 27 mins ago

























                    answered 35 mins ago









                    John OmielanJohn Omielan

                    4,2062215




                    4,2062215





















                        0












                        $begingroup$

                        There are many powerful codes that factorize a number to its prime factors in a non-polynomial time (for more information you can refer to Integer Factorization on Wikipedia) . Once an integer was factorized as follows$$n=p_1^alpha_1times p_2^alpha_2timescdots times p_m^alpha_m$$then by defining $d=gcd(alpha_1,alpha_2,cdots ,alpha_m)$ we can say that $n$ is a full $d$-th power.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
                          $endgroup$
                          – gt6989b
                          1 hour ago






                        • 2




                          $begingroup$
                          For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
                          $endgroup$
                          – Arturo Magidin
                          1 hour ago










                        • $begingroup$
                          This is orders-of-magnitude slower than just computing the square-root even by classical methods.
                          $endgroup$
                          – Alex R.
                          1 hour ago










                        • $begingroup$
                          I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
                          $endgroup$
                          – MPW
                          1 hour ago










                        • $begingroup$
                          I mean the most efficient that is possible so far
                          $endgroup$
                          – Mostafa Ayaz
                          1 hour ago















                        0












                        $begingroup$

                        There are many powerful codes that factorize a number to its prime factors in a non-polynomial time (for more information you can refer to Integer Factorization on Wikipedia) . Once an integer was factorized as follows$$n=p_1^alpha_1times p_2^alpha_2timescdots times p_m^alpha_m$$then by defining $d=gcd(alpha_1,alpha_2,cdots ,alpha_m)$ we can say that $n$ is a full $d$-th power.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
                          $endgroup$
                          – gt6989b
                          1 hour ago






                        • 2




                          $begingroup$
                          For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
                          $endgroup$
                          – Arturo Magidin
                          1 hour ago










                        • $begingroup$
                          This is orders-of-magnitude slower than just computing the square-root even by classical methods.
                          $endgroup$
                          – Alex R.
                          1 hour ago










                        • $begingroup$
                          I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
                          $endgroup$
                          – MPW
                          1 hour ago










                        • $begingroup$
                          I mean the most efficient that is possible so far
                          $endgroup$
                          – Mostafa Ayaz
                          1 hour ago













                        0












                        0








                        0





                        $begingroup$

                        There are many powerful codes that factorize a number to its prime factors in a non-polynomial time (for more information you can refer to Integer Factorization on Wikipedia) . Once an integer was factorized as follows$$n=p_1^alpha_1times p_2^alpha_2timescdots times p_m^alpha_m$$then by defining $d=gcd(alpha_1,alpha_2,cdots ,alpha_m)$ we can say that $n$ is a full $d$-th power.






                        share|cite|improve this answer











                        $endgroup$



                        There are many powerful codes that factorize a number to its prime factors in a non-polynomial time (for more information you can refer to Integer Factorization on Wikipedia) . Once an integer was factorized as follows$$n=p_1^alpha_1times p_2^alpha_2timescdots times p_m^alpha_m$$then by defining $d=gcd(alpha_1,alpha_2,cdots ,alpha_m)$ we can say that $n$ is a full $d$-th power.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited 27 mins ago

























                        answered 1 hour ago









                        Mostafa AyazMostafa Ayaz

                        18.1k31040




                        18.1k31040











                        • $begingroup$
                          not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
                          $endgroup$
                          – gt6989b
                          1 hour ago






                        • 2




                          $begingroup$
                          For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
                          $endgroup$
                          – Arturo Magidin
                          1 hour ago










                        • $begingroup$
                          This is orders-of-magnitude slower than just computing the square-root even by classical methods.
                          $endgroup$
                          – Alex R.
                          1 hour ago










                        • $begingroup$
                          I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
                          $endgroup$
                          – MPW
                          1 hour ago










                        • $begingroup$
                          I mean the most efficient that is possible so far
                          $endgroup$
                          – Mostafa Ayaz
                          1 hour ago
















                        • $begingroup$
                          not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
                          $endgroup$
                          – gt6989b
                          1 hour ago






                        • 2




                          $begingroup$
                          For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
                          $endgroup$
                          – Arturo Magidin
                          1 hour ago










                        • $begingroup$
                          This is orders-of-magnitude slower than just computing the square-root even by classical methods.
                          $endgroup$
                          – Alex R.
                          1 hour ago










                        • $begingroup$
                          I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
                          $endgroup$
                          – MPW
                          1 hour ago










                        • $begingroup$
                          I mean the most efficient that is possible so far
                          $endgroup$
                          – Mostafa Ayaz
                          1 hour ago















                        $begingroup$
                        not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
                        $endgroup$
                        – gt6989b
                        1 hour ago




                        $begingroup$
                        not sure about efficient, I believe it's an NP-complete problem. But surely checking if it is a perfect square would be doable more efficiently that doing the full prime factorization?!
                        $endgroup$
                        – gt6989b
                        1 hour ago




                        2




                        2




                        $begingroup$
                        For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
                        $endgroup$
                        – Arturo Magidin
                        1 hour ago




                        $begingroup$
                        For algorithms, "efficiently and fast" usually means being both deterministic and polynomial time in the length of the input; there is no known polynomial time deterministic algorithm for factoring integers, so I would absolutely quibble with your use of "efficiently and fast".
                        $endgroup$
                        – Arturo Magidin
                        1 hour ago












                        $begingroup$
                        This is orders-of-magnitude slower than just computing the square-root even by classical methods.
                        $endgroup$
                        – Alex R.
                        1 hour ago




                        $begingroup$
                        This is orders-of-magnitude slower than just computing the square-root even by classical methods.
                        $endgroup$
                        – Alex R.
                        1 hour ago












                        $begingroup$
                        I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
                        $endgroup$
                        – MPW
                        1 hour ago




                        $begingroup$
                        I was going to suggest that if you factorize $n>1$ as you have shown, with all of the $p_i$ distinct and all of the $alpha_i>0$, then $n$ is a perfect power if and only if all of the $alpha_i$ are equal.
                        $endgroup$
                        – MPW
                        1 hour ago












                        $begingroup$
                        I mean the most efficient that is possible so far
                        $endgroup$
                        – Mostafa Ayaz
                        1 hour ago




                        $begingroup$
                        I mean the most efficient that is possible so far
                        $endgroup$
                        – Mostafa Ayaz
                        1 hour ago











                        0












                        $begingroup$

                        It is at least possible to do this in polynomial time. Assume $n$ is a $k$-bit number and you want to find positive integers $a$ and $b$ such that $$a^b=ntag1$$ or prove that such numbers don't exists.



                        We have $$n<2^k$$ because $n$ is a $k$-bit number and so $$blt k$$



                        We can simply check for all possible $b$ if there is an $a$ such that $(1)$ holds. For given $b$ we can try to find $a$ by bisection. This bisection checks $O(log n)=O(k)$ different $a$. A check is the calculation of $a^b$. This can be achieved by multiplying powers of $a$ by $a$. These powers of $a$ are smaller than $n$. So we multiply $k$-bit numbers at most $b(lt k)$ times. A multiplication of two $k$-bit numbers needs $O(k^2)$ time. So all in all the algorithm needs $O(k^2)$ multiplications o $k$-bit numbers, which means $O(k^4)$ time.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          It is at least possible to do this in polynomial time. Assume $n$ is a $k$-bit number and you want to find positive integers $a$ and $b$ such that $$a^b=ntag1$$ or prove that such numbers don't exists.



                          We have $$n<2^k$$ because $n$ is a $k$-bit number and so $$blt k$$



                          We can simply check for all possible $b$ if there is an $a$ such that $(1)$ holds. For given $b$ we can try to find $a$ by bisection. This bisection checks $O(log n)=O(k)$ different $a$. A check is the calculation of $a^b$. This can be achieved by multiplying powers of $a$ by $a$. These powers of $a$ are smaller than $n$. So we multiply $k$-bit numbers at most $b(lt k)$ times. A multiplication of two $k$-bit numbers needs $O(k^2)$ time. So all in all the algorithm needs $O(k^2)$ multiplications o $k$-bit numbers, which means $O(k^4)$ time.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            It is at least possible to do this in polynomial time. Assume $n$ is a $k$-bit number and you want to find positive integers $a$ and $b$ such that $$a^b=ntag1$$ or prove that such numbers don't exists.



                            We have $$n<2^k$$ because $n$ is a $k$-bit number and so $$blt k$$



                            We can simply check for all possible $b$ if there is an $a$ such that $(1)$ holds. For given $b$ we can try to find $a$ by bisection. This bisection checks $O(log n)=O(k)$ different $a$. A check is the calculation of $a^b$. This can be achieved by multiplying powers of $a$ by $a$. These powers of $a$ are smaller than $n$. So we multiply $k$-bit numbers at most $b(lt k)$ times. A multiplication of two $k$-bit numbers needs $O(k^2)$ time. So all in all the algorithm needs $O(k^2)$ multiplications o $k$-bit numbers, which means $O(k^4)$ time.






                            share|cite|improve this answer









                            $endgroup$



                            It is at least possible to do this in polynomial time. Assume $n$ is a $k$-bit number and you want to find positive integers $a$ and $b$ such that $$a^b=ntag1$$ or prove that such numbers don't exists.



                            We have $$n<2^k$$ because $n$ is a $k$-bit number and so $$blt k$$



                            We can simply check for all possible $b$ if there is an $a$ such that $(1)$ holds. For given $b$ we can try to find $a$ by bisection. This bisection checks $O(log n)=O(k)$ different $a$. A check is the calculation of $a^b$. This can be achieved by multiplying powers of $a$ by $a$. These powers of $a$ are smaller than $n$. So we multiply $k$-bit numbers at most $b(lt k)$ times. A multiplication of two $k$-bit numbers needs $O(k^2)$ time. So all in all the algorithm needs $O(k^2)$ multiplications o $k$-bit numbers, which means $O(k^4)$ time.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 25 mins ago









                            miracle173miracle173

                            7,38022247




                            7,38022247



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165146%2fmethod-to-test-if-a-number-is-a-perfect-power%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                                Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                                Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager