Two monoidal structures and copoweringDefinition of enriched caterories or internal homs without using monoidal categories.Unitalization internal to monoidal categoriesCorrespondence between operads and monads requires tensor distribute over coproduct?Making additive envelopes of monoidal categories monoidalEnriching categories and equivalencesSeeking more information regarding the “rigoidal category” of $mathbbN$-graded setsIs there a monoidal category that coclassifies enriched category structures for a given set?Biased vs unbiased lax monoidal categoriesDefinitions of enriched monoidal categoryEnrichment of lax monoidal functors between closed monoidal categories

Multi tool use
Multi tool use

Two monoidal structures and copowering


Definition of enriched caterories or internal homs without using monoidal categories.Unitalization internal to monoidal categoriesCorrespondence between operads and monads requires tensor distribute over coproduct?Making additive envelopes of monoidal categories monoidalEnriching categories and equivalencesSeeking more information regarding the “rigoidal category” of $mathbbN$-graded setsIs there a monoidal category that coclassifies enriched category structures for a given set?Biased vs unbiased lax monoidal categoriesDefinitions of enriched monoidal categoryEnrichment of lax monoidal functors between closed monoidal categories













6












$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    2 hours ago















6












$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    2 hours ago













6












6








6





$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$




Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?







ct.category-theory monoidal-categories operads enriched-category-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









FKranholdFKranhold

3046




3046







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    2 hours ago












  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    2 hours ago







1




1




$begingroup$
Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
$endgroup$
– FKranhold
2 hours ago




$begingroup$
Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
$endgroup$
– FKranhold
2 hours ago










1 Answer
1






active

oldest

votes


















7












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    2 hours ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    1 hour ago










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326520%2ftwo-monoidal-structures-and-copowering%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    2 hours ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    1 hour ago










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    1 hour ago
















7












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    2 hours ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    1 hour ago










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    1 hour ago














7












7








7





$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$



No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 2 hours ago









Peter LeFanu LumsdainePeter LeFanu Lumsdaine

8,82613871




8,82613871











  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    2 hours ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    1 hour ago










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    1 hour ago

















  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    2 hours ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    1 hour ago










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    1 hour ago
















$begingroup$
Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
$endgroup$
– FKranhold
2 hours ago




$begingroup$
Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
$endgroup$
– FKranhold
2 hours ago












$begingroup$
@FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
$endgroup$
– Peter LeFanu Lumsdaine
1 hour ago




$begingroup$
@FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
$endgroup$
– Peter LeFanu Lumsdaine
1 hour ago












$begingroup$
I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
$endgroup$
– FKranhold
1 hour ago





$begingroup$
I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
$endgroup$
– FKranhold
1 hour ago


















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326520%2ftwo-monoidal-structures-and-copowering%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







cRLJgkp982,weN8pWNVBjs,gzM 2Xo
1IPRkCyHkTbF2FKLgY,n7egfTM HpSRuDoy485XKs7

Popular posts from this blog

Creating centerline of river in QGIS? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding centrelines from polygons in QGIS?Splitting line into two lines with GRASS GIS?Centroid of the equator and a pointpostgis: problems creating flow direction polyline; not all needed connections are drawnhow to make decent sense from scattered river depth measurementsQGIS Interpolation on Curved Grid (River DEMs)How to create automatic parking baysShortest path creation between two linesclipping layer using query builder in QGISFinding which side of closest polyline point lies on in QGIS?Create centerline from multi-digitized roadway lines Qgis 2.18Getting bathymetric contours confined only within river banks using QGIS?

What is the result of assigning to std::vector::begin()? The Next CEO of Stack OverflowWhat are the differences between a pointer variable and a reference variable in C++?What does the explicit keyword mean?Concatenating two std::vectorsHow to find out if an item is present in a std::vector?Why is “using namespace std” considered bad practice?What is the “-->” operator in C++?What is the easiest way to initialize a std::vector with hardcoded elements?What is The Rule of Three?What are the basic rules and idioms for operator overloading?Why are std::begin and std::end “not memory safe”?