Does every subgroup of an abelian group have to be abelian? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraA condition for a subgroup of a finitely generated free abelian group to have finite indexAdditive non-abelian group?Galois Group, Field Extension Prove AbelianCommutator subgroup is the minimal normal subgroup such that quotient group is abelianShowing that every subgroup of an abelian group is normalevery subgroup of the quaternion group is normalQuotient Group $D_2n/R$ is abelian where $R$ is the group of rotations?Proving a subgroup of a Galois group is normalNormal Subgroup of Galois GroupFaithful group action and Galois correspondence
Coin Game with infinite paradox
Page Layouts : 1 column , 2 columns-left , 2 columns-right , 3 column
What is a good proxy for government quality?
How can I wire a 9-position switch so that each position turns on one more LED than the one before?
What do you call an IPA symbol that lacks a name (e.g. ɲ)?
What does the black goddess statue do and what is it?
Are these square matrices always diagonalisable?
Are there existing rules/lore for MTG planeswalkers?
Is it OK if I do not take the receipt in Germany?
Was there ever a LEGO store in Miami International Airport?
Why is arima in R one time step off?
How would it unbalance gameplay to rule that Weapon Master allows for picking a fighting style?
Mechanism of the formation of peracetic acid
/bin/ls sorts differently than just ls
Raising a bilingual kid. When should we introduce the majority language?
Why isPrototypeOf() returns false?
TV series episode where humans nuke aliens before decrypting their message that states they come in peace
How do I deal with an erroneously large refund?
What happened to Viserion in Season 7?
Did war bonds have better investment alternatives during WWII?
Is it appropriate to mention a relatable company blog post when you're asked about the company?
What is ls Largest Number Formed by only moving two sticks in 508?
How did Elite on the NES work?
All ASCII characters with a given bit count
Does every subgroup of an abelian group have to be abelian?
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraA condition for a subgroup of a finitely generated free abelian group to have finite indexAdditive non-abelian group?Galois Group, Field Extension Prove AbelianCommutator subgroup is the minimal normal subgroup such that quotient group is abelianShowing that every subgroup of an abelian group is normalevery subgroup of the quaternion group is normalQuotient Group $D_2n/R$ is abelian where $R$ is the group of rotations?Proving a subgroup of a Galois group is normalNormal Subgroup of Galois GroupFaithful group action and Galois correspondence
$begingroup$
My original problem is to show that E/L is an abelian extension over L and L/F is an abelian extension over F, given that E/F is an abelian extension over F and that L is a normal extension of F such that $Fsubseteq L subseteq E$.
So far I have proved that E is a normal extension of F, E is a normal extension of L, and L is a normal extension of F. I know that to prove abelian extension I must also prove that Gal(E/L) is an abelian group. I have shown that Gal(E/L) $subseteq$ Gal (E/F). In my mind it makes sense that I cannot lose commutativity therefore my subgroup must be Abelian too. How do I show this in a proof? Is it enough to show two elements in the subgroup must also exist in the larger group and that they must be commutative in the larger group? I feel like I know what needs to be done, just not how to phrase it.
abstract-algebra group-theory galois-theory abelian-groups
$endgroup$
add a comment |
$begingroup$
My original problem is to show that E/L is an abelian extension over L and L/F is an abelian extension over F, given that E/F is an abelian extension over F and that L is a normal extension of F such that $Fsubseteq L subseteq E$.
So far I have proved that E is a normal extension of F, E is a normal extension of L, and L is a normal extension of F. I know that to prove abelian extension I must also prove that Gal(E/L) is an abelian group. I have shown that Gal(E/L) $subseteq$ Gal (E/F). In my mind it makes sense that I cannot lose commutativity therefore my subgroup must be Abelian too. How do I show this in a proof? Is it enough to show two elements in the subgroup must also exist in the larger group and that they must be commutative in the larger group? I feel like I know what needs to be done, just not how to phrase it.
abstract-algebra group-theory galois-theory abelian-groups
$endgroup$
add a comment |
$begingroup$
My original problem is to show that E/L is an abelian extension over L and L/F is an abelian extension over F, given that E/F is an abelian extension over F and that L is a normal extension of F such that $Fsubseteq L subseteq E$.
So far I have proved that E is a normal extension of F, E is a normal extension of L, and L is a normal extension of F. I know that to prove abelian extension I must also prove that Gal(E/L) is an abelian group. I have shown that Gal(E/L) $subseteq$ Gal (E/F). In my mind it makes sense that I cannot lose commutativity therefore my subgroup must be Abelian too. How do I show this in a proof? Is it enough to show two elements in the subgroup must also exist in the larger group and that they must be commutative in the larger group? I feel like I know what needs to be done, just not how to phrase it.
abstract-algebra group-theory galois-theory abelian-groups
$endgroup$
My original problem is to show that E/L is an abelian extension over L and L/F is an abelian extension over F, given that E/F is an abelian extension over F and that L is a normal extension of F such that $Fsubseteq L subseteq E$.
So far I have proved that E is a normal extension of F, E is a normal extension of L, and L is a normal extension of F. I know that to prove abelian extension I must also prove that Gal(E/L) is an abelian group. I have shown that Gal(E/L) $subseteq$ Gal (E/F). In my mind it makes sense that I cannot lose commutativity therefore my subgroup must be Abelian too. How do I show this in a proof? Is it enough to show two elements in the subgroup must also exist in the larger group and that they must be commutative in the larger group? I feel like I know what needs to be done, just not how to phrase it.
abstract-algebra group-theory galois-theory abelian-groups
abstract-algebra group-theory galois-theory abelian-groups
edited 4 hours ago
J. W. Tanner
5,1651520
5,1651520
asked 6 hours ago
MT mathMT math
253
253
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Huh, funny, we just went over this today in my algebra class.
Yes, subgroups of abelian groups are indeed abelian, and your thought process has the right idea.
Showing this is pretty easy. Take an abelian group $G$ with subgroup $H$. Then we know that, for all $a,bin H$, $ab=ba$ since it must also hold in $G$ (as $a,b in G ge H$ and $G$ is given to be abelian).
$endgroup$
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
add a comment |
$begingroup$
If $G$ is an abelian group and $H$ is a subgroup, suppose $x, yin H$. Then in particular $x, yin G$, so $xy=yx$. Since $x, y$ were arbitrary, $H$ is abelian.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3198960%2fdoes-every-subgroup-of-an-abelian-group-have-to-be-abelian%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Huh, funny, we just went over this today in my algebra class.
Yes, subgroups of abelian groups are indeed abelian, and your thought process has the right idea.
Showing this is pretty easy. Take an abelian group $G$ with subgroup $H$. Then we know that, for all $a,bin H$, $ab=ba$ since it must also hold in $G$ (as $a,b in G ge H$ and $G$ is given to be abelian).
$endgroup$
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
add a comment |
$begingroup$
Huh, funny, we just went over this today in my algebra class.
Yes, subgroups of abelian groups are indeed abelian, and your thought process has the right idea.
Showing this is pretty easy. Take an abelian group $G$ with subgroup $H$. Then we know that, for all $a,bin H$, $ab=ba$ since it must also hold in $G$ (as $a,b in G ge H$ and $G$ is given to be abelian).
$endgroup$
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
add a comment |
$begingroup$
Huh, funny, we just went over this today in my algebra class.
Yes, subgroups of abelian groups are indeed abelian, and your thought process has the right idea.
Showing this is pretty easy. Take an abelian group $G$ with subgroup $H$. Then we know that, for all $a,bin H$, $ab=ba$ since it must also hold in $G$ (as $a,b in G ge H$ and $G$ is given to be abelian).
$endgroup$
Huh, funny, we just went over this today in my algebra class.
Yes, subgroups of abelian groups are indeed abelian, and your thought process has the right idea.
Showing this is pretty easy. Take an abelian group $G$ with subgroup $H$. Then we know that, for all $a,bin H$, $ab=ba$ since it must also hold in $G$ (as $a,b in G ge H$ and $G$ is given to be abelian).
answered 6 hours ago
Eevee TrainerEevee Trainer
10.8k31843
10.8k31843
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
add a comment |
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
can I use essentially the same reasoning to prove that L/F is an abelian extension as well?
$endgroup$
– MT math
6 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
$begingroup$
I believe so, yes.
$endgroup$
– Eevee Trainer
4 hours ago
add a comment |
$begingroup$
If $G$ is an abelian group and $H$ is a subgroup, suppose $x, yin H$. Then in particular $x, yin G$, so $xy=yx$. Since $x, y$ were arbitrary, $H$ is abelian.
$endgroup$
add a comment |
$begingroup$
If $G$ is an abelian group and $H$ is a subgroup, suppose $x, yin H$. Then in particular $x, yin G$, so $xy=yx$. Since $x, y$ were arbitrary, $H$ is abelian.
$endgroup$
add a comment |
$begingroup$
If $G$ is an abelian group and $H$ is a subgroup, suppose $x, yin H$. Then in particular $x, yin G$, so $xy=yx$. Since $x, y$ were arbitrary, $H$ is abelian.
$endgroup$
If $G$ is an abelian group and $H$ is a subgroup, suppose $x, yin H$. Then in particular $x, yin G$, so $xy=yx$. Since $x, y$ were arbitrary, $H$ is abelian.
answered 6 hours ago
Matt SamuelMatt Samuel
39.5k63870
39.5k63870
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3198960%2fdoes-every-subgroup-of-an-abelian-group-have-to-be-abelian%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown