Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy. Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraSuppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy

Is it acceptable to use working hours to read general interest books?

Would reducing the reference voltage of an ADC have any effect on accuracy?

What's the difference between using dependency injection with a container and using a service locator?

Where did Arya get these scars?

How to use @AuraEnabled base class method in Lightning Component?

A strange hotel

PIC mathematical operations weird problem

Expansion//Explosion and Siren Stormtamer

What was Apollo 13's "Little Jolt" after MECO?

Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?

Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.

What ability score does a Hexblade's Pact Weapon use for attack and damage when wielded by another character?

What *exactly* is electrical current, voltage, and resistance?

Is it OK if I do not take the receipt in Germany?

Why isn't everyone flabbergasted about Bran's "gift"?

How to keep bees out of canned beverages?

Passing args from the bash script to the function in the script

Israeli soda type drink

Can I criticise the more senior developers around me for not writing clean code?

What is the term for a person whose job is to place products on shelves in stores?

Why does the Cisco show run command not show the full version, while the show version command does?

As an international instructor, should I openly talk about my accent?

I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?

How to avoid introduction cliches



Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraSuppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy










2












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    3 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    3 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    52 mins ago
















2












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    3 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    3 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    52 mins ago














2












2








2


1



$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$




Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.







real-analysis cauchy-sequences






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









oranjioranji

616




616







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    3 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    3 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    52 mins ago













  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    3 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    3 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    52 mins ago








1




1




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
3 hours ago




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
3 hours ago












$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
3 hours ago




$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
3 hours ago












$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
52 mins ago





$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
52 mins ago











2 Answers
2






active

oldest

votes


















2












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    51 mins ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    50 mins ago


















2












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    55 mins ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    52 mins ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    51 mins ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    50 mins ago















2












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    51 mins ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    50 mins ago













2












2








2





$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$



To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 35 mins ago

























answered 52 mins ago









trancelocationtrancelocation

14.6k1929




14.6k1929











  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    51 mins ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    50 mins ago
















  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    51 mins ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    50 mins ago















$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
51 mins ago




$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
51 mins ago




1




1




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
50 mins ago




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
50 mins ago











2












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    55 mins ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    52 mins ago















2












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    55 mins ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    52 mins ago













2












2








2





$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$



This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 3 hours ago









Subhasis BiswasSubhasis Biswas

608512




608512











  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    55 mins ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    52 mins ago
















  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    55 mins ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    52 mins ago















$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
55 mins ago




$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
55 mins ago












$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
52 mins ago




$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
52 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager