Intuition of generalized eigenvector.The intuition behind generalized eigenvectorsWhy is the eigenvector of a covariance matrix equal to a principal component?An intuitive approach to the Jordan Normal formIntuitive meaning of right and left eigenvectorConsider a linear operator $L$ and some polynomial of it, $L'=p(L)$. Show that the minimal polynomial of $L'$ has smaller degree than that of $L$.Why are the eigenvalues of a covariance matrix equal to the variance of its eigenvectors?How to determine the length of the Jordan chain associated to an eigenvector?Generalized eigenvectors for Jordan canonical form (and theory)Finding generalized eigenvectors from a Jordan formYet Another Question Regarding Jordan FormFinding ch. polynomial and Jordan normal form of $f$ knowing $dimker f=2$ and there are $a,b$ not in $ker f$ such that $f^2(a)=0, f(b)=b$

What if a revenant (monster) gains fire resistance?

What should you do if you miss a job interview (deliberately)?

Pre-mixing cryogenic fuels and using only one fuel tank

Are the IPv6 address space and IPv4 address space completely disjoint?

What does routing an IP address mean?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Is it better practice to read straight from sheet music rather than memorize it?

Should I stop contributing to retirement accounts?

How should I respond when I lied about my education and the company finds out through background check?

Is it safe to use olive oil to clean the ear wax?

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?

"Spoil" vs "Ruin"

Energy measurement from position eigenstate

Non-trope happy ending?

Can I sign legal documents with a smiley face?

C++ debug/print custom type with GDB : the case of nlohmann json library

What are the purposes of autoencoders?

Drawing ramified coverings with tikz

Which one is correct as adjective “protruding” or “protruded”?

Longest common substring in linear time

Not using 's' for he/she/it

How to indicate a cut out for a product window

Why electric field inside a cavity of a non-conducting sphere not zero?



Intuition of generalized eigenvector.


The intuition behind generalized eigenvectorsWhy is the eigenvector of a covariance matrix equal to a principal component?An intuitive approach to the Jordan Normal formIntuitive meaning of right and left eigenvectorConsider a linear operator $L$ and some polynomial of it, $L'=p(L)$. Show that the minimal polynomial of $L'$ has smaller degree than that of $L$.Why are the eigenvalues of a covariance matrix equal to the variance of its eigenvectors?How to determine the length of the Jordan chain associated to an eigenvector?Generalized eigenvectors for Jordan canonical form (and theory)Finding generalized eigenvectors from a Jordan formYet Another Question Regarding Jordan FormFinding ch. polynomial and Jordan normal form of $f$ knowing $dimker f=2$ and there are $a,b$ not in $ker f$ such that $f^2(a)=0, f(b)=b$













1












$begingroup$


I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago















1












$begingroup$


I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago













1












1








1





$begingroup$


I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.










share|cite|improve this question











$endgroup$




I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.







linear-algebra intuition jordan-normal-form generalizedeigenvector






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Andrews

1,2761421




1,2761421










asked 3 hours ago









roi_saumonroi_saumon

62338




62338











  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago
















  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago















$begingroup$
I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
$endgroup$
– Ted Shifrin
1 hour ago




$begingroup$
I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
$endgroup$
– Ted Shifrin
1 hour ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Don't look for anything particularly deep or fancy here.



If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
$$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



    For instance, take the skew transformation given by the matrix
    $$
    beginbmatrix1&1\0&1endbmatrix
    $$

    It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



    However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



      $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






      share|cite|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159938%2fintuition-of-generalized-eigenvector%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        Don't look for anything particularly deep or fancy here.



        If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
        $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
        Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



        Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



        Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






        share|cite|improve this answer











        $endgroup$

















          2












          $begingroup$

          Don't look for anything particularly deep or fancy here.



          If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
          $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
          Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



          Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



          Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






          share|cite|improve this answer











          $endgroup$















            2












            2








            2





            $begingroup$

            Don't look for anything particularly deep or fancy here.



            If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
            $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
            Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



            Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



            Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






            share|cite|improve this answer











            $endgroup$



            Don't look for anything particularly deep or fancy here.



            If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
            $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
            Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



            Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



            Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 2 hours ago

























            answered 2 hours ago









            Henning MakholmHenning Makholm

            242k17308550




            242k17308550





















                1












                $begingroup$

                I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                For instance, take the skew transformation given by the matrix
                $$
                beginbmatrix1&1\0&1endbmatrix
                $$

                It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                  For instance, take the skew transformation given by the matrix
                  $$
                  beginbmatrix1&1\0&1endbmatrix
                  $$

                  It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                  However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                    For instance, take the skew transformation given by the matrix
                    $$
                    beginbmatrix1&1\0&1endbmatrix
                    $$

                    It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                    However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






                    share|cite|improve this answer









                    $endgroup$



                    I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                    For instance, take the skew transformation given by the matrix
                    $$
                    beginbmatrix1&1\0&1endbmatrix
                    $$

                    It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                    However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    ArthurArthur

                    119k7118202




                    119k7118202





















                        0












                        $begingroup$

                        Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                        $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                          $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                            $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






                            share|cite|improve this answer









                            $endgroup$



                            Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                            $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 hours ago









                            user247327user247327

                            11.5k1516




                            11.5k1516



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159938%2fintuition-of-generalized-eigenvector%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                                Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                                Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager