Longest common substring in linear timeComputing the longest common substring of two strings using suffix arraysFind longest common substring using a rolling hashWhich algorithm to use to find all common substring (LCS case) with really big stringsFinding the longest repeating subsequenceHow to find longest recurring pattern from lage string data set?Longest substring with consecutive repetitionsDoes the Longest Common Subsequence problem reduce to its binary version?Substring problems in suffix treesNumber of optimal solutions for Longest Common Subsequence (Substring) problemLongest common sequence matrix giving wrong answer
Is it possible to have a strip of cold climate in the middle of a planet?
Is it better practice to read straight from sheet music rather than memorize it?
What does chmod -u do?
How much character growth crosses the line into breaking the character
Why Shazam when there is already Superman?
Why did the Mercure fail?
What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?
The IT department bottlenecks progress. How should I handle this?
What does "Scientists rise up against statistical significance" mean? (Comment in Nature)
Why is so much work done on numerical verification of the Riemann Hypothesis?
Start making guitar arrangements
What are the purposes of autoencoders?
Aragorn's "guise" in the Orthanc Stone
Can I sign legal documents with a smiley face?
What is this called? Old film camera viewer?
How to explain what's wrong with this application of the chain rule?
Pre-mixing cryogenic fuels and using only one fuel tank
When were female captains banned from Starfleet?
Travelling outside the UK without a passport
Strong empirical falsification of quantum mechanics based on vacuum energy density
Problem with TransformedDistribution
Closed-form expression for certain product
Added a new user on Ubuntu, set password not working?
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
Longest common substring in linear time
Computing the longest common substring of two strings using suffix arraysFind longest common substring using a rolling hashWhich algorithm to use to find all common substring (LCS case) with really big stringsFinding the longest repeating subsequenceHow to find longest recurring pattern from lage string data set?Longest substring with consecutive repetitionsDoes the Longest Common Subsequence problem reduce to its binary version?Substring problems in suffix treesNumber of optimal solutions for Longest Common Subsequence (Substring) problemLongest common sequence matrix giving wrong answer
$begingroup$
We know that the longest common substring of two strings can be found in O(N^2) time complexity.
Can a solution be found in only linear time?
algorithms time-complexity strings longest-common-substring
$endgroup$
add a comment |
$begingroup$
We know that the longest common substring of two strings can be found in O(N^2) time complexity.
Can a solution be found in only linear time?
algorithms time-complexity strings longest-common-substring
$endgroup$
add a comment |
$begingroup$
We know that the longest common substring of two strings can be found in O(N^2) time complexity.
Can a solution be found in only linear time?
algorithms time-complexity strings longest-common-substring
$endgroup$
We know that the longest common substring of two strings can be found in O(N^2) time complexity.
Can a solution be found in only linear time?
algorithms time-complexity strings longest-common-substring
algorithms time-complexity strings longest-common-substring
edited 2 hours ago
Discrete lizard♦
4,44011537
4,44011537
asked 2 hours ago
Manoharsinh RanaManoharsinh Rana
917
917
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.
Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.
Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.
$endgroup$
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
add a comment |
$begingroup$
It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).
SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.
While finding a substring is a slightly different problem, it seems likely to be equally hard.
$endgroup$
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
add a comment |
$begingroup$
Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem
In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).
Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105969%2flongest-common-substring-in-linear-time%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.
Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.
Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.
$endgroup$
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
add a comment |
$begingroup$
Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.
Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.
Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.
$endgroup$
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
add a comment |
$begingroup$
Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.
Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.
Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.
$endgroup$
Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.
Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.
Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.
answered 49 mins ago
Apass.JackApass.Jack
13.3k1939
13.3k1939
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
add a comment |
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
$begingroup$
I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
$endgroup$
– Apass.Jack
45 mins ago
add a comment |
$begingroup$
It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).
SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.
While finding a substring is a slightly different problem, it seems likely to be equally hard.
$endgroup$
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
add a comment |
$begingroup$
It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).
SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.
While finding a substring is a slightly different problem, it seems likely to be equally hard.
$endgroup$
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
add a comment |
$begingroup$
It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).
SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.
While finding a substring is a slightly different problem, it seems likely to be equally hard.
$endgroup$
It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).
SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.
While finding a substring is a slightly different problem, it seems likely to be equally hard.
edited 1 hour ago
answered 2 hours ago
Discrete lizard♦Discrete lizard
4,44011537
4,44011537
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
add a comment |
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
are you talking about subsequence? I am talking about substring.
$endgroup$
– Manoharsinh Rana
2 hours ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
@ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
$endgroup$
– Discrete lizard♦
1 hour ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
$begingroup$
Longest common substring is much easier than longest common subsequence. See my answer.
$endgroup$
– D.W.♦
48 mins ago
add a comment |
$begingroup$
Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem
In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).
Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)
$endgroup$
add a comment |
$begingroup$
Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem
In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).
Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)
$endgroup$
add a comment |
$begingroup$
Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem
In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).
Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)
$endgroup$
Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem
In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).
Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)
answered 1 hour ago
D.W.♦D.W.
102k12127291
102k12127291
add a comment |
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105969%2flongest-common-substring-in-linear-time%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown