Alternate inner products on Euclidean space? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)$|x -y|+|y-z|=|x-z|$ implies $y= a x + b z$ where $a +b =1$Complex inner product aren't inner products.Inequivalent norms (given by different inner products) on infinite dimensional Hilbert space.Is it possible to define an inner product to an arbitrary field?Bilinear, symmetric function $f(mathbf x, mathbf y)$ defines an inner productDot Product vs Inner ProductUniqueness (or not) of an inner product on some vector spaceIncidence algebras and dot productsHow to prove that the matrix of a symmetric bilinear form is symmetricCompatibility of cross and inner product on $mathbbR^3$

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

Bonus calculation: Am I making a mountain out of a molehill?

Should I use Javascript Classes or Apex Classes in Lightning Web Components?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

Marking the functions of a sentence: 'She may like it'

What is a 'tuning' of a guitar and why would you use it? Doesn't it make it more difficult to play?

How can I fade player when goes inside or outside of the area?

Why does Python start at index 1 when iterating an array backwards?

Area of a 2D convex hull

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

Do I really need recursive chmod to restrict access to a folder?

Date formating in QGIS expression

List *all* the tuples!

Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?

How widely used is the term Treppenwitz? Is it something that most Germans know?

Are variable time comparisons always a security risk in cryptography code?

3 doors, three guards, one stone

Can a non-EU citizen traveling with me come with me through the EU passport line?

Is the Standard Deduction better than Itemized when both are the same amount?

Why there are no cargo aircraft with "flying wing" design?

When is phishing education going too far?

Is there a concise way to say "all of the X, one of each"?

When to stop saving and start investing?

If 'B is more likely given A', then 'A is more likely given B'



Alternate inner products on Euclidean space?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)$|x -y|+|y-z|=|x-z|$ implies $y= a x + b z$ where $a +b =1$Complex inner product aren't inner products.Inequivalent norms (given by different inner products) on infinite dimensional Hilbert space.Is it possible to define an inner product to an arbitrary field?Bilinear, symmetric function $f(mathbf x, mathbf y)$ defines an inner productDot Product vs Inner ProductUniqueness (or not) of an inner product on some vector spaceIncidence algebras and dot productsHow to prove that the matrix of a symmetric bilinear form is symmetricCompatibility of cross and inner product on $mathbbR^3$










3












$begingroup$


After reading about inner products as a generalization of the dot product, I was hoping to be able to prove that the dot product is in some sense the unique inner product in Euclidean space (e.g., up to constant scaling).



But it seems that there are a whole bunch of alternative inner products in $mathbbR^2$ with nonzero cross-terms between basis vectors, for example, $langle (a, b)^intercal, (x, y)^intercal rangle = ax + by + 0.5(ay + bx)$. Unless I've made a mistake, this satisfies symmetry, linearity, and positive-definiteness.



Is there a sense in which the dot product is the canonical inner product on Euclidean space? Or do we just pick it because the implied norm matches our notion of distance?










share|cite|improve this question









New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Not quite what you're asking - but we do know that any two inner products on a finite-dimensional vector space are equivalent, which means there are positive constants $c, C$ such that $c langle x, y rangle_1 le langle x, y rangle_2 le C langle x, y rangle_2$ for all $x,y$. So although the inner product is not unique, at least any two are within a constant scaling factor of each other. (This fact is most useful when studying a topology induced by the inner product - it means the corresponding topology doesn't depend on the choice of inner product.)
    $endgroup$
    – Daniel Schepler
    2 hours ago
















3












$begingroup$


After reading about inner products as a generalization of the dot product, I was hoping to be able to prove that the dot product is in some sense the unique inner product in Euclidean space (e.g., up to constant scaling).



But it seems that there are a whole bunch of alternative inner products in $mathbbR^2$ with nonzero cross-terms between basis vectors, for example, $langle (a, b)^intercal, (x, y)^intercal rangle = ax + by + 0.5(ay + bx)$. Unless I've made a mistake, this satisfies symmetry, linearity, and positive-definiteness.



Is there a sense in which the dot product is the canonical inner product on Euclidean space? Or do we just pick it because the implied norm matches our notion of distance?










share|cite|improve this question









New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Not quite what you're asking - but we do know that any two inner products on a finite-dimensional vector space are equivalent, which means there are positive constants $c, C$ such that $c langle x, y rangle_1 le langle x, y rangle_2 le C langle x, y rangle_2$ for all $x,y$. So although the inner product is not unique, at least any two are within a constant scaling factor of each other. (This fact is most useful when studying a topology induced by the inner product - it means the corresponding topology doesn't depend on the choice of inner product.)
    $endgroup$
    – Daniel Schepler
    2 hours ago














3












3








3


1



$begingroup$


After reading about inner products as a generalization of the dot product, I was hoping to be able to prove that the dot product is in some sense the unique inner product in Euclidean space (e.g., up to constant scaling).



But it seems that there are a whole bunch of alternative inner products in $mathbbR^2$ with nonzero cross-terms between basis vectors, for example, $langle (a, b)^intercal, (x, y)^intercal rangle = ax + by + 0.5(ay + bx)$. Unless I've made a mistake, this satisfies symmetry, linearity, and positive-definiteness.



Is there a sense in which the dot product is the canonical inner product on Euclidean space? Or do we just pick it because the implied norm matches our notion of distance?










share|cite|improve this question









New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




After reading about inner products as a generalization of the dot product, I was hoping to be able to prove that the dot product is in some sense the unique inner product in Euclidean space (e.g., up to constant scaling).



But it seems that there are a whole bunch of alternative inner products in $mathbbR^2$ with nonzero cross-terms between basis vectors, for example, $langle (a, b)^intercal, (x, y)^intercal rangle = ax + by + 0.5(ay + bx)$. Unless I've made a mistake, this satisfies symmetry, linearity, and positive-definiteness.



Is there a sense in which the dot product is the canonical inner product on Euclidean space? Or do we just pick it because the implied norm matches our notion of distance?







linear-algebra inner-product-space






share|cite|improve this question









New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Björn Friedrich

2,70661831




2,70661831






New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 4 hours ago









rampatowlrampatowl

1162




1162




New contributor




rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






rampatowl is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Not quite what you're asking - but we do know that any two inner products on a finite-dimensional vector space are equivalent, which means there are positive constants $c, C$ such that $c langle x, y rangle_1 le langle x, y rangle_2 le C langle x, y rangle_2$ for all $x,y$. So although the inner product is not unique, at least any two are within a constant scaling factor of each other. (This fact is most useful when studying a topology induced by the inner product - it means the corresponding topology doesn't depend on the choice of inner product.)
    $endgroup$
    – Daniel Schepler
    2 hours ago

















  • $begingroup$
    Not quite what you're asking - but we do know that any two inner products on a finite-dimensional vector space are equivalent, which means there are positive constants $c, C$ such that $c langle x, y rangle_1 le langle x, y rangle_2 le C langle x, y rangle_2$ for all $x,y$. So although the inner product is not unique, at least any two are within a constant scaling factor of each other. (This fact is most useful when studying a topology induced by the inner product - it means the corresponding topology doesn't depend on the choice of inner product.)
    $endgroup$
    – Daniel Schepler
    2 hours ago
















$begingroup$
Not quite what you're asking - but we do know that any two inner products on a finite-dimensional vector space are equivalent, which means there are positive constants $c, C$ such that $c langle x, y rangle_1 le langle x, y rangle_2 le C langle x, y rangle_2$ for all $x,y$. So although the inner product is not unique, at least any two are within a constant scaling factor of each other. (This fact is most useful when studying a topology induced by the inner product - it means the corresponding topology doesn't depend on the choice of inner product.)
$endgroup$
– Daniel Schepler
2 hours ago





$begingroup$
Not quite what you're asking - but we do know that any two inner products on a finite-dimensional vector space are equivalent, which means there are positive constants $c, C$ such that $c langle x, y rangle_1 le langle x, y rangle_2 le C langle x, y rangle_2$ for all $x,y$. So although the inner product is not unique, at least any two are within a constant scaling factor of each other. (This fact is most useful when studying a topology induced by the inner product - it means the corresponding topology doesn't depend on the choice of inner product.)
$endgroup$
– Daniel Schepler
2 hours ago











3 Answers
3






active

oldest

votes


















3












$begingroup$

Any inner product is dot product in some basis. For example, your inner product is standard dot product written in basis $left(e_1, frac12e_1 + fracsqrt32e_2right)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
    $endgroup$
    – eyeballfrog
    53 mins ago










  • $begingroup$
    Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
    $endgroup$
    – mihaild
    10 mins ago


















2












$begingroup$

There is nothing special about the dot product. Yes, it corresponds to the Euclidean norm if you are using an orthonormal basis. But if your basis is not orthonormal then the Euclidean norm will be represented by some other symmetric matrix.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    For an arbitrary inner product $left<right>$ on $mathbb R^n$, there is a positive definite real symmetric matrix $A_ij = left<e_i|e_jright>$ that defines the transform. Since it is real and symmetric, it is orthogonally diagonalizable. That is, for any inner product on $mathbb R^n$, there is a set of real numbers $lambda_j$ and an orthonormal basis $left|xi_jright>$ such that
    $$
    left<a|bright> = sum_jlambda_jleft<a|xi_jright>left<xi_j|bright>
    $$

    Roughly speaking, the inner product resolves $a$ and $b$ into their $xi_j$ components, then weights the resulting dot product by $lambda_j$.



    In general, this choice of $left|xi_jright>$ will be unique. However, for some inner products, there will be multiple possible choices of $left|xi_jright>$. The Euclidean norm is unique (up to a constant scaling) in that every choice of $left|xi_jright>$ allows the inner product to be written in that form--it is independent of the chosen basis.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      rampatowl is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188850%2falternate-inner-products-on-euclidean-space%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Any inner product is dot product in some basis. For example, your inner product is standard dot product written in basis $left(e_1, frac12e_1 + fracsqrt32e_2right)$.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
        $endgroup$
        – eyeballfrog
        53 mins ago










      • $begingroup$
        Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
        $endgroup$
        – mihaild
        10 mins ago















      3












      $begingroup$

      Any inner product is dot product in some basis. For example, your inner product is standard dot product written in basis $left(e_1, frac12e_1 + fracsqrt32e_2right)$.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
        $endgroup$
        – eyeballfrog
        53 mins ago










      • $begingroup$
        Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
        $endgroup$
        – mihaild
        10 mins ago













      3












      3








      3





      $begingroup$

      Any inner product is dot product in some basis. For example, your inner product is standard dot product written in basis $left(e_1, frac12e_1 + fracsqrt32e_2right)$.






      share|cite|improve this answer









      $endgroup$



      Any inner product is dot product in some basis. For example, your inner product is standard dot product written in basis $left(e_1, frac12e_1 + fracsqrt32e_2right)$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      mihaildmihaild

      97711




      97711











      • $begingroup$
        No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
        $endgroup$
        – eyeballfrog
        53 mins ago










      • $begingroup$
        Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
        $endgroup$
        – mihaild
        10 mins ago
















      • $begingroup$
        No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
        $endgroup$
        – eyeballfrog
        53 mins ago










      • $begingroup$
        Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
        $endgroup$
        – mihaild
        10 mins ago















      $begingroup$
      No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
      $endgroup$
      – eyeballfrog
      53 mins ago




      $begingroup$
      No it's not. $e_2 = (-1,2)/sqrt3$ in that basis, which has euclidean norm 5/3. But $left<e_2,e_2right> = 1$.
      $endgroup$
      – eyeballfrog
      53 mins ago












      $begingroup$
      Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
      $endgroup$
      – mihaild
      10 mins ago




      $begingroup$
      Using author's inner product we have $langle (-1, 2) / sqrt3, (-1, 2) / sqrt3rangle = 1$. And in general - if we write two vectors in this basis and take inner product as defined in question, we get their standard dot product.
      $endgroup$
      – mihaild
      10 mins ago











      2












      $begingroup$

      There is nothing special about the dot product. Yes, it corresponds to the Euclidean norm if you are using an orthonormal basis. But if your basis is not orthonormal then the Euclidean norm will be represented by some other symmetric matrix.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        There is nothing special about the dot product. Yes, it corresponds to the Euclidean norm if you are using an orthonormal basis. But if your basis is not orthonormal then the Euclidean norm will be represented by some other symmetric matrix.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          There is nothing special about the dot product. Yes, it corresponds to the Euclidean norm if you are using an orthonormal basis. But if your basis is not orthonormal then the Euclidean norm will be represented by some other symmetric matrix.






          share|cite|improve this answer









          $endgroup$



          There is nothing special about the dot product. Yes, it corresponds to the Euclidean norm if you are using an orthonormal basis. But if your basis is not orthonormal then the Euclidean norm will be represented by some other symmetric matrix.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          gandalf61gandalf61

          9,293825




          9,293825





















              0












              $begingroup$

              For an arbitrary inner product $left<right>$ on $mathbb R^n$, there is a positive definite real symmetric matrix $A_ij = left<e_i|e_jright>$ that defines the transform. Since it is real and symmetric, it is orthogonally diagonalizable. That is, for any inner product on $mathbb R^n$, there is a set of real numbers $lambda_j$ and an orthonormal basis $left|xi_jright>$ such that
              $$
              left<a|bright> = sum_jlambda_jleft<a|xi_jright>left<xi_j|bright>
              $$

              Roughly speaking, the inner product resolves $a$ and $b$ into their $xi_j$ components, then weights the resulting dot product by $lambda_j$.



              In general, this choice of $left|xi_jright>$ will be unique. However, for some inner products, there will be multiple possible choices of $left|xi_jright>$. The Euclidean norm is unique (up to a constant scaling) in that every choice of $left|xi_jright>$ allows the inner product to be written in that form--it is independent of the chosen basis.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                For an arbitrary inner product $left<right>$ on $mathbb R^n$, there is a positive definite real symmetric matrix $A_ij = left<e_i|e_jright>$ that defines the transform. Since it is real and symmetric, it is orthogonally diagonalizable. That is, for any inner product on $mathbb R^n$, there is a set of real numbers $lambda_j$ and an orthonormal basis $left|xi_jright>$ such that
                $$
                left<a|bright> = sum_jlambda_jleft<a|xi_jright>left<xi_j|bright>
                $$

                Roughly speaking, the inner product resolves $a$ and $b$ into their $xi_j$ components, then weights the resulting dot product by $lambda_j$.



                In general, this choice of $left|xi_jright>$ will be unique. However, for some inner products, there will be multiple possible choices of $left|xi_jright>$. The Euclidean norm is unique (up to a constant scaling) in that every choice of $left|xi_jright>$ allows the inner product to be written in that form--it is independent of the chosen basis.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  For an arbitrary inner product $left<right>$ on $mathbb R^n$, there is a positive definite real symmetric matrix $A_ij = left<e_i|e_jright>$ that defines the transform. Since it is real and symmetric, it is orthogonally diagonalizable. That is, for any inner product on $mathbb R^n$, there is a set of real numbers $lambda_j$ and an orthonormal basis $left|xi_jright>$ such that
                  $$
                  left<a|bright> = sum_jlambda_jleft<a|xi_jright>left<xi_j|bright>
                  $$

                  Roughly speaking, the inner product resolves $a$ and $b$ into their $xi_j$ components, then weights the resulting dot product by $lambda_j$.



                  In general, this choice of $left|xi_jright>$ will be unique. However, for some inner products, there will be multiple possible choices of $left|xi_jright>$. The Euclidean norm is unique (up to a constant scaling) in that every choice of $left|xi_jright>$ allows the inner product to be written in that form--it is independent of the chosen basis.






                  share|cite|improve this answer









                  $endgroup$



                  For an arbitrary inner product $left<right>$ on $mathbb R^n$, there is a positive definite real symmetric matrix $A_ij = left<e_i|e_jright>$ that defines the transform. Since it is real and symmetric, it is orthogonally diagonalizable. That is, for any inner product on $mathbb R^n$, there is a set of real numbers $lambda_j$ and an orthonormal basis $left|xi_jright>$ such that
                  $$
                  left<a|bright> = sum_jlambda_jleft<a|xi_jright>left<xi_j|bright>
                  $$

                  Roughly speaking, the inner product resolves $a$ and $b$ into their $xi_j$ components, then weights the resulting dot product by $lambda_j$.



                  In general, this choice of $left|xi_jright>$ will be unique. However, for some inner products, there will be multiple possible choices of $left|xi_jright>$. The Euclidean norm is unique (up to a constant scaling) in that every choice of $left|xi_jright>$ allows the inner product to be written in that form--it is independent of the chosen basis.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 40 mins ago









                  eyeballfrogeyeballfrog

                  7,212633




                  7,212633




















                      rampatowl is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      rampatowl is a new contributor. Be nice, and check out our Code of Conduct.












                      rampatowl is a new contributor. Be nice, and check out our Code of Conduct.











                      rampatowl is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188850%2falternate-inner-products-on-euclidean-space%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

                      Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

                      Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager