Non-Borel set in arbitrary metric spaceDerived Sets in arbitrary metric space$A subseteq (X,d)$ is compact. Which metric $p$ makes $(A times A,p)$ also compact and $d: (A times A,p) rightarrow [0,infty)$ continuous?Borel sets and measurabilityapproximate a Borel set by a continuousAn example of Lebesgue measurable set but not Borel measurable besides the “subset of Cantor set” example.A Borel subset of a topological spaceseparability of a metric spacetotally disconnected and non Borel set.What do metric spaces look like?How do we get the notion “Borel regular” measures?

Multi tool use
Multi tool use

Why didn't Voldemort know what Grindelwald looked like?

Unfrosted light bulb

Is there a POSIX way to shutdown a UNIX machine?

Why do Radio Buttons not fill the entire outer circle?

Magnifying glass in hyperbolic space

Why doesn't Gödel's incompleteness theorem apply to false statements?

I keep switching characters, how do I stop?

A seasonal riddle

Reason why a kingside attack is not justified

How do I prevent inappropriate ads from appearing in my game?

Reasons for having MCU pin-states default to pull-up/down out of reset

Why does a 97 / 92 key piano exist by Bosendorfer?

What properties make a magic weapon befit a Rogue more than a DEX-based Fighter?

Offset in split text content

Sort with assumptions

How do you say "Trust your struggle." in French?

Put the phone down / Put down the phone

Would a primitive species be able to learn English from reading books alone?

How to preserve electronics (computers, ipads, phones) for hundreds of years?

Connection Between Knot Theory and Number Theory

Why is "la Gestapo" feminine?

Derivative of an interpolated function

Showing mass murder in a kid's book

Why does the frost depth increase when the surface temperature warms up?



Non-Borel set in arbitrary metric space


Derived Sets in arbitrary metric space$A subseteq (X,d)$ is compact. Which metric $p$ makes $(A times A,p)$ also compact and $d: (A times A,p) rightarrow [0,infty)$ continuous?Borel sets and measurabilityapproximate a Borel set by a continuousAn example of Lebesgue measurable set but not Borel measurable besides the “subset of Cantor set” example.A Borel subset of a topological spaceseparability of a metric spacetotally disconnected and non Borel set.What do metric spaces look like?How do we get the notion “Borel regular” measures?













1












$begingroup$


Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










      share|cite|improve this question









      $endgroup$




      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.







      real-analysis general-topology functional-analysis measure-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Daniel LiDaniel Li

      752414




      752414




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbbR$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



          This result can be found in:
          Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



          In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $(x,y,d)$ equipped with the discrete metric $d:x,ytimes x,y to 0,1$ given by
          $$
          d(x,y)=1, quad d(x,x)=d(y,y)=0.
          $$

          The Borel sigma algebra on this metric space is given by
          $$
          x,y,x,y,emptyset = mathcalP(x,y)
          $$

          where $mathcalP(x,y)$ is the powerset of $x,y$, so all subsets are Borel measurable sets.






          share|cite|improve this answer











          $endgroup$




















            2












            $begingroup$

            Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



            In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbbR$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



              This result can be found in:
              Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



              In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $(x,y,d)$ equipped with the discrete metric $d:x,ytimes x,y to 0,1$ given by
              $$
              d(x,y)=1, quad d(x,x)=d(y,y)=0.
              $$

              The Borel sigma algebra on this metric space is given by
              $$
              x,y,x,y,emptyset = mathcalP(x,y)
              $$

              where $mathcalP(x,y)$ is the powerset of $x,y$, so all subsets are Borel measurable sets.






              share|cite|improve this answer











              $endgroup$

















                4












                $begingroup$

                Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbbR$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



                This result can be found in:
                Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



                In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $(x,y,d)$ equipped with the discrete metric $d:x,ytimes x,y to 0,1$ given by
                $$
                d(x,y)=1, quad d(x,x)=d(y,y)=0.
                $$

                The Borel sigma algebra on this metric space is given by
                $$
                x,y,x,y,emptyset = mathcalP(x,y)
                $$

                where $mathcalP(x,y)$ is the powerset of $x,y$, so all subsets are Borel measurable sets.






                share|cite|improve this answer











                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbbR$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



                  This result can be found in:
                  Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



                  In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $(x,y,d)$ equipped with the discrete metric $d:x,ytimes x,y to 0,1$ given by
                  $$
                  d(x,y)=1, quad d(x,x)=d(y,y)=0.
                  $$

                  The Borel sigma algebra on this metric space is given by
                  $$
                  x,y,x,y,emptyset = mathcalP(x,y)
                  $$

                  where $mathcalP(x,y)$ is the powerset of $x,y$, so all subsets are Borel measurable sets.






                  share|cite|improve this answer











                  $endgroup$



                  Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbbR$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



                  This result can be found in:
                  Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



                  In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $(x,y,d)$ equipped with the discrete metric $d:x,ytimes x,y to 0,1$ given by
                  $$
                  d(x,y)=1, quad d(x,x)=d(y,y)=0.
                  $$

                  The Borel sigma algebra on this metric space is given by
                  $$
                  x,y,x,y,emptyset = mathcalP(x,y)
                  $$

                  where $mathcalP(x,y)$ is the powerset of $x,y$, so all subsets are Borel measurable sets.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 3 hours ago

























                  answered 3 hours ago









                  MartinMartin

                  1,096917




                  1,096917





















                      2












                      $begingroup$

                      Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                      In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                        In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                          In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






                          share|cite|improve this answer









                          $endgroup$



                          Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                          In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          Noah SchweberNoah Schweber

                          127k10151290




                          127k10151290



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              zCGNUDOioCuyknjn,v1X L0tQ6Gvb,X,G,a cWnWrk7HCVTSaegzNj QxWU7g7RO4mhz FWv,ZY,Yz9d9ETM3sV0PPN
                              MOzdMgk7ZpxXGfZ,McoJM,Uk 6uMLcbFd3daJYO5k 8TTCHYNiXf,3,PY,xl6 6hZ8kVXcVOTNEDCG6W3 oe9cxQn7OOrRx,DXvz4JoCxRK2

                              Popular posts from this blog

                              Creating centerline of river in QGIS? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding centrelines from polygons in QGIS?Splitting line into two lines with GRASS GIS?Centroid of the equator and a pointpostgis: problems creating flow direction polyline; not all needed connections are drawnhow to make decent sense from scattered river depth measurementsQGIS Interpolation on Curved Grid (River DEMs)How to create automatic parking baysShortest path creation between two linesclipping layer using query builder in QGISFinding which side of closest polyline point lies on in QGIS?Create centerline from multi-digitized roadway lines Qgis 2.18Getting bathymetric contours confined only within river banks using QGIS?

                              What is the result of assigning to std::vector::begin()? The Next CEO of Stack OverflowWhat are the differences between a pointer variable and a reference variable in C++?What does the explicit keyword mean?Concatenating two std::vectorsHow to find out if an item is present in a std::vector?Why is “using namespace std” considered bad practice?What is the “-->” operator in C++?What is the easiest way to initialize a std::vector with hardcoded elements?What is The Rule of Three?What are the basic rules and idioms for operator overloading?Why are std::begin and std::end “not memory safe”?