How to solve this challenging limit?Limit of the sequence $n^n/n!$, is this sequence bounded, convergent and eventually monotonic?Evaluating: $int 3xsinleft(frac x4right) , dx$.can you multiply a limit that doesn't exist times a limit that is equal to zero?Compute this integralFinding the limit of lim$_n rightarrow inftyleft( dfracn^32^n right)$Prove inequality $arccos left( fracsin 1-sin x1-x right) leq sqrtfrac1+x+x^23$What's wrong in this evaluation of the definite integral of $sin^2 (x/3)$?For each $a in mathbbR$ evaluate $ limlimits_n to inftybeginpmatrix 1&fracan\frac-an&1endpmatrix^n.$Demonstrate that $(x+y)ln left(fracx+y2right) leq xln x +yln y$Deriving an expression for price elasticity of demand

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible

I got the following comment from a reputed math journal. What does it mean?

Why does a Star of David appear at a rally with Francisco Franco?

Fastest way to pop N items from a large dict

Why do newer 737s use two different styles of split winglets?

Professor being mistaken for a grad student

Official degrees of earth’s rotation per day

Brexit - No Deal Rejection

What did “the good wine” (τὸν καλὸν οἶνον) mean in John 2:10?

I am confused as to how the inverse of a certain function is found.

Violin - Can double stops be played when the strings are not next to each other?

Print a physical multiplication table

Is there a symmetric-key algorithm which we can use for creating a signature?

Employee lack of ownership

As a new Ubuntu desktop 18.04 LTS user, do I need to use ufw for a firewall or is iptables sufficient?

If I am holding an item before I cast Blink, will it move with me through the Ethereal Plane?

How to terminate ping <dest> &

Are relativity and doppler effect related?

Bach's Toccata and Fugue in D minor breaks the "no parallel octaves" rule?

Knife as defense against stray dogs

What is the significance behind "40 days" that often appears in the Bible?

This word with a lot of past tenses

Simplify an interface for flexibly applying rules to periods of time

How do you talk to someone whose loved one is dying?



How to solve this challenging limit?


Limit of the sequence $n^n/n!$, is this sequence bounded, convergent and eventually monotonic?Evaluating: $int 3xsinleft(frac x4right) , dx$.can you multiply a limit that doesn't exist times a limit that is equal to zero?Compute this integralFinding the limit of lim$_n rightarrow inftyleft( dfracn^32^n right)$Prove inequality $arccos left( fracsin 1-sin x1-x right) leq sqrtfrac1+x+x^23$What's wrong in this evaluation of the definite integral of $sin^2 (x/3)$?For each $a in mathbbR$ evaluate $ limlimits_n to inftybeginpmatrix 1&fracan\frac-an&1endpmatrix^n.$Demonstrate that $(x+y)ln left(fracx+y2right) leq xln x +yln y$Deriving an expression for price elasticity of demand













4












$begingroup$


I believe more than one answer may be correct. I thought about this for a while and I feel like there is a simplification that makes it look a whole lot easier but I can't figure out what it is.



I noticed that every term within the limit is multiplied so I figured that some terms might divide out but dividing $(x+n)$ by $(x^2+n^2)$ doesn't really seem to lead to any useful simplifications.



I thought about multiplying out everything on top and bottom of the inner expression but that again just seems to go nowhere and gets very messy and complicated without any reductions or simplifications.



Since they ask to take the derivative in one of the answer choices, surely there's some simplifications to be made to make this problem a lot easier.




$mathbf 46.$ Let $displaystyle f(x) = lim_ntoinfty left( frac displaystyle n^n (x+n) left(x+frac n2right) ldots left(x+frac nnright) displaystyle n! (x^2+n^2) left(x^2+fracn^24right) ldots left(x^2+fracn^2n^2right)right)^dfrac xn$, for all $x>0$. Then



(A) $f left(dfrac12right) geq f(1)$



(B) $f left(dfrac13right) leq f left(dfrac23right)$



(C) $f'(2) leq 0$



(D) $dfrac f'(3)f(3) geq dfrac f'(2)f(2)$











share|cite|improve this question











$endgroup$











  • $begingroup$
    Please make you question self-contained, without relying on images. You can use MathJax.
    $endgroup$
    – Carsten S
    11 hours ago






  • 1




    $begingroup$
    Thanks Rocherz, great formatting!
    $endgroup$
    – Tidronicus
    11 hours ago










  • $begingroup$
    Possible hint: logarithms.
    $endgroup$
    – Sean Roberson
    11 hours ago










  • $begingroup$
    That's a question of JEE Advanced I guess, you can look it up on the net solutions are available there.
    $endgroup$
    – Sahil Silare
    8 hours ago















4












$begingroup$


I believe more than one answer may be correct. I thought about this for a while and I feel like there is a simplification that makes it look a whole lot easier but I can't figure out what it is.



I noticed that every term within the limit is multiplied so I figured that some terms might divide out but dividing $(x+n)$ by $(x^2+n^2)$ doesn't really seem to lead to any useful simplifications.



I thought about multiplying out everything on top and bottom of the inner expression but that again just seems to go nowhere and gets very messy and complicated without any reductions or simplifications.



Since they ask to take the derivative in one of the answer choices, surely there's some simplifications to be made to make this problem a lot easier.




$mathbf 46.$ Let $displaystyle f(x) = lim_ntoinfty left( frac displaystyle n^n (x+n) left(x+frac n2right) ldots left(x+frac nnright) displaystyle n! (x^2+n^2) left(x^2+fracn^24right) ldots left(x^2+fracn^2n^2right)right)^dfrac xn$, for all $x>0$. Then



(A) $f left(dfrac12right) geq f(1)$



(B) $f left(dfrac13right) leq f left(dfrac23right)$



(C) $f'(2) leq 0$



(D) $dfrac f'(3)f(3) geq dfrac f'(2)f(2)$











share|cite|improve this question











$endgroup$











  • $begingroup$
    Please make you question self-contained, without relying on images. You can use MathJax.
    $endgroup$
    – Carsten S
    11 hours ago






  • 1




    $begingroup$
    Thanks Rocherz, great formatting!
    $endgroup$
    – Tidronicus
    11 hours ago










  • $begingroup$
    Possible hint: logarithms.
    $endgroup$
    – Sean Roberson
    11 hours ago










  • $begingroup$
    That's a question of JEE Advanced I guess, you can look it up on the net solutions are available there.
    $endgroup$
    – Sahil Silare
    8 hours ago













4












4








4


2



$begingroup$


I believe more than one answer may be correct. I thought about this for a while and I feel like there is a simplification that makes it look a whole lot easier but I can't figure out what it is.



I noticed that every term within the limit is multiplied so I figured that some terms might divide out but dividing $(x+n)$ by $(x^2+n^2)$ doesn't really seem to lead to any useful simplifications.



I thought about multiplying out everything on top and bottom of the inner expression but that again just seems to go nowhere and gets very messy and complicated without any reductions or simplifications.



Since they ask to take the derivative in one of the answer choices, surely there's some simplifications to be made to make this problem a lot easier.




$mathbf 46.$ Let $displaystyle f(x) = lim_ntoinfty left( frac displaystyle n^n (x+n) left(x+frac n2right) ldots left(x+frac nnright) displaystyle n! (x^2+n^2) left(x^2+fracn^24right) ldots left(x^2+fracn^2n^2right)right)^dfrac xn$, for all $x>0$. Then



(A) $f left(dfrac12right) geq f(1)$



(B) $f left(dfrac13right) leq f left(dfrac23right)$



(C) $f'(2) leq 0$



(D) $dfrac f'(3)f(3) geq dfrac f'(2)f(2)$











share|cite|improve this question











$endgroup$




I believe more than one answer may be correct. I thought about this for a while and I feel like there is a simplification that makes it look a whole lot easier but I can't figure out what it is.



I noticed that every term within the limit is multiplied so I figured that some terms might divide out but dividing $(x+n)$ by $(x^2+n^2)$ doesn't really seem to lead to any useful simplifications.



I thought about multiplying out everything on top and bottom of the inner expression but that again just seems to go nowhere and gets very messy and complicated without any reductions or simplifications.



Since they ask to take the derivative in one of the answer choices, surely there's some simplifications to be made to make this problem a lot easier.




$mathbf 46.$ Let $displaystyle f(x) = lim_ntoinfty left( frac displaystyle n^n (x+n) left(x+frac n2right) ldots left(x+frac nnright) displaystyle n! (x^2+n^2) left(x^2+fracn^24right) ldots left(x^2+fracn^2n^2right)right)^dfrac xn$, for all $x>0$. Then



(A) $f left(dfrac12right) geq f(1)$



(B) $f left(dfrac13right) leq f left(dfrac23right)$



(C) $f'(2) leq 0$



(D) $dfrac f'(3)f(3) geq dfrac f'(2)f(2)$








calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 11 hours ago









Rócherz

2,9762821




2,9762821










asked 11 hours ago









TidronicusTidronicus

263




263











  • $begingroup$
    Please make you question self-contained, without relying on images. You can use MathJax.
    $endgroup$
    – Carsten S
    11 hours ago






  • 1




    $begingroup$
    Thanks Rocherz, great formatting!
    $endgroup$
    – Tidronicus
    11 hours ago










  • $begingroup$
    Possible hint: logarithms.
    $endgroup$
    – Sean Roberson
    11 hours ago










  • $begingroup$
    That's a question of JEE Advanced I guess, you can look it up on the net solutions are available there.
    $endgroup$
    – Sahil Silare
    8 hours ago
















  • $begingroup$
    Please make you question self-contained, without relying on images. You can use MathJax.
    $endgroup$
    – Carsten S
    11 hours ago






  • 1




    $begingroup$
    Thanks Rocherz, great formatting!
    $endgroup$
    – Tidronicus
    11 hours ago










  • $begingroup$
    Possible hint: logarithms.
    $endgroup$
    – Sean Roberson
    11 hours ago










  • $begingroup$
    That's a question of JEE Advanced I guess, you can look it up on the net solutions are available there.
    $endgroup$
    – Sahil Silare
    8 hours ago















$begingroup$
Please make you question self-contained, without relying on images. You can use MathJax.
$endgroup$
– Carsten S
11 hours ago




$begingroup$
Please make you question self-contained, without relying on images. You can use MathJax.
$endgroup$
– Carsten S
11 hours ago




1




1




$begingroup$
Thanks Rocherz, great formatting!
$endgroup$
– Tidronicus
11 hours ago




$begingroup$
Thanks Rocherz, great formatting!
$endgroup$
– Tidronicus
11 hours ago












$begingroup$
Possible hint: logarithms.
$endgroup$
– Sean Roberson
11 hours ago




$begingroup$
Possible hint: logarithms.
$endgroup$
– Sean Roberson
11 hours ago












$begingroup$
That's a question of JEE Advanced I guess, you can look it up on the net solutions are available there.
$endgroup$
– Sahil Silare
8 hours ago




$begingroup$
That's a question of JEE Advanced I guess, you can look it up on the net solutions are available there.
$endgroup$
– Sahil Silare
8 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

beginalign
log f(x)
&=logleft(fracn^nn!prod_k=1^nfracx+frac nkx^2+fracn^2k^2right)^frac xn\
&=frac xnlogleft(fracn!n^2nn!n^2nprod_k=1^nfracfrackxn+1left(frackxnright)^2+1right)\
&=frac xnsum_k=1^nlogfracfrackxn+1left(frackxnright)^2+1\
&xrightarrowntoinftyint_0^xlogfract+1t^2+1mathrm dt
endalign

(Edit) Consequently, $f(x)>0$ for every $x>0$,
$$fracf'(x)f(x)=logfracx+1x^2+1
begincases
>0&0<x<1\
=0&x=1\
<0&x>1
endcases$$

Thus $f$ is increasing for $0<x<1$, hence (A) is false, (B) is true, (C) is true and (D) is equivalent to
$$logfrac410gelogfrac35$$
which is false.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    +1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
    $endgroup$
    – J.G.
    8 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150431%2fhow-to-solve-this-challenging-limit%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

beginalign
log f(x)
&=logleft(fracn^nn!prod_k=1^nfracx+frac nkx^2+fracn^2k^2right)^frac xn\
&=frac xnlogleft(fracn!n^2nn!n^2nprod_k=1^nfracfrackxn+1left(frackxnright)^2+1right)\
&=frac xnsum_k=1^nlogfracfrackxn+1left(frackxnright)^2+1\
&xrightarrowntoinftyint_0^xlogfract+1t^2+1mathrm dt
endalign

(Edit) Consequently, $f(x)>0$ for every $x>0$,
$$fracf'(x)f(x)=logfracx+1x^2+1
begincases
>0&0<x<1\
=0&x=1\
<0&x>1
endcases$$

Thus $f$ is increasing for $0<x<1$, hence (A) is false, (B) is true, (C) is true and (D) is equivalent to
$$logfrac410gelogfrac35$$
which is false.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    +1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
    $endgroup$
    – J.G.
    8 hours ago















5












$begingroup$

beginalign
log f(x)
&=logleft(fracn^nn!prod_k=1^nfracx+frac nkx^2+fracn^2k^2right)^frac xn\
&=frac xnlogleft(fracn!n^2nn!n^2nprod_k=1^nfracfrackxn+1left(frackxnright)^2+1right)\
&=frac xnsum_k=1^nlogfracfrackxn+1left(frackxnright)^2+1\
&xrightarrowntoinftyint_0^xlogfract+1t^2+1mathrm dt
endalign

(Edit) Consequently, $f(x)>0$ for every $x>0$,
$$fracf'(x)f(x)=logfracx+1x^2+1
begincases
>0&0<x<1\
=0&x=1\
<0&x>1
endcases$$

Thus $f$ is increasing for $0<x<1$, hence (A) is false, (B) is true, (C) is true and (D) is equivalent to
$$logfrac410gelogfrac35$$
which is false.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    +1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
    $endgroup$
    – J.G.
    8 hours ago













5












5








5





$begingroup$

beginalign
log f(x)
&=logleft(fracn^nn!prod_k=1^nfracx+frac nkx^2+fracn^2k^2right)^frac xn\
&=frac xnlogleft(fracn!n^2nn!n^2nprod_k=1^nfracfrackxn+1left(frackxnright)^2+1right)\
&=frac xnsum_k=1^nlogfracfrackxn+1left(frackxnright)^2+1\
&xrightarrowntoinftyint_0^xlogfract+1t^2+1mathrm dt
endalign

(Edit) Consequently, $f(x)>0$ for every $x>0$,
$$fracf'(x)f(x)=logfracx+1x^2+1
begincases
>0&0<x<1\
=0&x=1\
<0&x>1
endcases$$

Thus $f$ is increasing for $0<x<1$, hence (A) is false, (B) is true, (C) is true and (D) is equivalent to
$$logfrac410gelogfrac35$$
which is false.






share|cite|improve this answer











$endgroup$



beginalign
log f(x)
&=logleft(fracn^nn!prod_k=1^nfracx+frac nkx^2+fracn^2k^2right)^frac xn\
&=frac xnlogleft(fracn!n^2nn!n^2nprod_k=1^nfracfrackxn+1left(frackxnright)^2+1right)\
&=frac xnsum_k=1^nlogfracfrackxn+1left(frackxnright)^2+1\
&xrightarrowntoinftyint_0^xlogfract+1t^2+1mathrm dt
endalign

(Edit) Consequently, $f(x)>0$ for every $x>0$,
$$fracf'(x)f(x)=logfracx+1x^2+1
begincases
>0&0<x<1\
=0&x=1\
<0&x>1
endcases$$

Thus $f$ is increasing for $0<x<1$, hence (A) is false, (B) is true, (C) is true and (D) is equivalent to
$$logfrac410gelogfrac35$$
which is false.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 7 hours ago

























answered 8 hours ago









Fabio LucchiniFabio Lucchini

9,01311426




9,01311426







  • 1




    $begingroup$
    +1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
    $endgroup$
    – J.G.
    8 hours ago












  • 1




    $begingroup$
    +1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
    $endgroup$
    – J.G.
    8 hours ago







1




1




$begingroup$
+1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
$endgroup$
– J.G.
8 hours ago




$begingroup$
+1. In particular (assuming I've made no mistakes), $(ln f)^prime=lnfracx+1x^2+1$ is positive on $[0,,1)$ but negative for $x<1$, so (A) is false, (B) is true, (C) is true and (D) is equivalent to the statement $lnfrac410gelnfrac35$, which is false.
$endgroup$
– J.G.
8 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150431%2fhow-to-solve-this-challenging-limit%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager