Aluminum electrolytic or ceramic capacitors for linear regulator input and output?Replacing tantalum capacitor with ceramic capacitor for Op AmpsCeramic or electrolytic capacitors for a switching buck regulator?Linear regulator LM1084 5.0V capacitors choicePurpose of a resistor at the input of a linear regulatorDamaging a linear regulator applying a voltage to the outputfrequency response — for linear regulatorHow critical are the input and out capacitor values in a linear voltage regulator?Choosing capacitors for a linear voltage regulatorSelecting the correct input/output capacitors for a 7805What causes a faulty Linear Voltage regulator to output wrong voltageInput and Output Capacitor for PoE + DCDC Controller

et qui - how do you really understand that kind of phraseology?

What is a ^ b and (a & b) << 1?

Recruiter wants very extensive technical details about all of my previous work

What's the meaning of a knight fighting a snail in medieval book illustrations?

Did Ender ever learn that he killed Stilson and/or Bonzo?

What is the relationship between relativity and the Doppler effect?

Official degrees of earth’s rotation per day

Is it normal that my co-workers at a fitness company criticize my food choices?

Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?

Have the tides ever turned twice on any open problem?

Is honey really a supersaturated solution? Does heating to un-crystalize redissolve it or melt it?

What is the adequate fee for a reveal operation?

What did “the good wine” (τὸν καλὸν οἶνον) mean in John 2:10?

Why do passenger jet manufacturers design their planes with stall prevention systems?

Violin - Can double stops be played when the strings are not next to each other?

The German vowel “a” changes to the English “i”

Different outputs for `w`, `who`, `whoami` and `id`

Could the Saturn V actually have launched astronauts around Venus?

Are ETF trackers fundamentally better than individual stocks?

Non-trivial topology where only open sets are closed

A diagram about partial derivatives of f(x,y)

Why is a white electrical wire connected to 2 black wires?

Explaining pyrokinesis powers

Aluminum electrolytic or ceramic capacitors for linear regulator input and output?



Aluminum electrolytic or ceramic capacitors for linear regulator input and output?


Replacing tantalum capacitor with ceramic capacitor for Op AmpsCeramic or electrolytic capacitors for a switching buck regulator?Linear regulator LM1084 5.0V capacitors choicePurpose of a resistor at the input of a linear regulatorDamaging a linear regulator applying a voltage to the outputfrequency response — for linear regulatorHow critical are the input and out capacitor values in a linear voltage regulator?Choosing capacitors for a linear voltage regulatorSelecting the correct input/output capacitors for a 7805What causes a faulty Linear Voltage regulator to output wrong voltageInput and Output Capacitor for PoE + DCDC Controller













3












$begingroup$


I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.



Should these capacitors be or a particular type, or does it not matter?










share|improve this question









$endgroup$











  • $begingroup$
    This answer is related: electronics.stackexchange.com/a/426181/202270
    $endgroup$
    – Edgar Brown
    5 hours ago






  • 2




    $begingroup$
    I agree with the general consensus. Another option is to use ceramic caps but put a resistor in series to insure stability. Another option is to contact ST micro and just ask them.
    $endgroup$
    – mkeith
    4 hours ago















3












$begingroup$


I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.



Should these capacitors be or a particular type, or does it not matter?










share|improve this question









$endgroup$











  • $begingroup$
    This answer is related: electronics.stackexchange.com/a/426181/202270
    $endgroup$
    – Edgar Brown
    5 hours ago






  • 2




    $begingroup$
    I agree with the general consensus. Another option is to use ceramic caps but put a resistor in series to insure stability. Another option is to contact ST micro and just ask them.
    $endgroup$
    – mkeith
    4 hours ago













3












3








3





$begingroup$


I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.



Should these capacitors be or a particular type, or does it not matter?










share|improve this question









$endgroup$




I am using this linear voltage regulator. The datasheet indicates the input and output values for the capacitance to use, 1uF and 10uF respectively.



Should these capacitors be or a particular type, or does it not matter?







capacitor linear-regulator






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 6 hours ago









A.S.A.S.

446214




446214











  • $begingroup$
    This answer is related: electronics.stackexchange.com/a/426181/202270
    $endgroup$
    – Edgar Brown
    5 hours ago






  • 2




    $begingroup$
    I agree with the general consensus. Another option is to use ceramic caps but put a resistor in series to insure stability. Another option is to contact ST micro and just ask them.
    $endgroup$
    – mkeith
    4 hours ago
















  • $begingroup$
    This answer is related: electronics.stackexchange.com/a/426181/202270
    $endgroup$
    – Edgar Brown
    5 hours ago






  • 2




    $begingroup$
    I agree with the general consensus. Another option is to use ceramic caps but put a resistor in series to insure stability. Another option is to contact ST micro and just ask them.
    $endgroup$
    – mkeith
    4 hours ago















$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
5 hours ago




$begingroup$
This answer is related: electronics.stackexchange.com/a/426181/202270
$endgroup$
– Edgar Brown
5 hours ago




2




2




$begingroup$
I agree with the general consensus. Another option is to use ceramic caps but put a resistor in series to insure stability. Another option is to contact ST micro and just ask them.
$endgroup$
– mkeith
4 hours ago




$begingroup$
I agree with the general consensus. Another option is to use ceramic caps but put a resistor in series to insure stability. Another option is to contact ST micro and just ask them.
$endgroup$
– mkeith
4 hours ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.



Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.




Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.






share|improve this answer











$endgroup$








  • 3




    $begingroup$
    The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
    $endgroup$
    – The Photon
    5 hours ago






  • 1




    $begingroup$
    That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
    $endgroup$
    – Hearth
    5 hours ago


















0












$begingroup$

The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.



The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
    $endgroup$
    – Hearth
    5 hours ago






  • 2




    $begingroup$
    I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
    $endgroup$
    – The Photon
    5 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");

StackExchange.ifUsing("editor", function ()
return StackExchange.using("schematics", function ()
StackExchange.schematics.init();
);
, "cicuitlab");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "135"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427585%2faluminum-electrolytic-or-ceramic-capacitors-for-linear-regulator-input-and-outpu%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.



Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.




Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.






share|improve this answer











$endgroup$








  • 3




    $begingroup$
    The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
    $endgroup$
    – The Photon
    5 hours ago






  • 1




    $begingroup$
    That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
    $endgroup$
    – Hearth
    5 hours ago















5












$begingroup$

It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.



Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.




Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.






share|improve this answer











$endgroup$








  • 3




    $begingroup$
    The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
    $endgroup$
    – The Photon
    5 hours ago






  • 1




    $begingroup$
    That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
    $endgroup$
    – Hearth
    5 hours ago













5












5








5





$begingroup$

It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.



Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.




Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.






share|improve this answer











$endgroup$



It doesn't usually matter, but be aware that some linear regulators--the popular LM2940 series, for example--may be unstable if the output capacitor's ESR is too high or too low. As the datasheet for your regulator doesn't seem to say anything about that at a glance, it should be fine with any capacitors you pick, but see the edit below for a warning.



Non-polarized capacitors more than about a microfarad used to be rare and expensive, which is probably why the datasheet shows polarized capacitors being used. Today, you can get 10μF ceramic capacitors for less than $0.30 each.




Edit: As @ThePhoton points out, this regulator may be so old that multi-microfarad ceramic capacitors, with their inherent low ESR, may have been a far-off pipe dream to the engineers writing the datasheet. So this may still be unstable with too low an ESR on its output, so unless you want to test its stability under different operating conditions with the ceramic caps, it may be best to stick to aluminum electrolytics. After all, that's probably what the IC's designers had in mind.







share|improve this answer














share|improve this answer



share|improve this answer








edited 4 hours ago

























answered 5 hours ago









HearthHearth

4,5651136




4,5651136







  • 3




    $begingroup$
    The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
    $endgroup$
    – The Photon
    5 hours ago






  • 1




    $begingroup$
    That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
    $endgroup$
    – Hearth
    5 hours ago












  • 3




    $begingroup$
    The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
    $endgroup$
    – The Photon
    5 hours ago






  • 1




    $begingroup$
    That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
    $endgroup$
    – Hearth
    5 hours ago







3




3




$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
5 hours ago




$begingroup$
The chip might just be so old that when they wrote the datasheet, they didn't consider the possibility that someone would want to use a low-ESR ceramic capacitor for such high values (1 and 10 uF). I'd stick with electrolytic unless I had time to experiment and make sure it stays stable with ceramic over all operating conditions (temperature, input voltage, etc).
$endgroup$
– The Photon
5 hours ago




1




1




$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
5 hours ago




$begingroup$
That's a good point, @ThePhoton. Then again, MLCCs are relatively high ESR as ceramics go, and you can get pretty low ESR electrolytics--I'm not sure how they compare, but you do make a good point and I'll add a note to that effect in the answer.
$endgroup$
– Hearth
5 hours ago













0












$begingroup$

The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.



The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
    $endgroup$
    – Hearth
    5 hours ago






  • 2




    $begingroup$
    I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
    $endgroup$
    – The Photon
    5 hours ago















0












$begingroup$

The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.



The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
    $endgroup$
    – Hearth
    5 hours ago






  • 2




    $begingroup$
    I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
    $endgroup$
    – The Photon
    5 hours ago













0












0








0





$begingroup$

The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.



The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.






share|improve this answer









$endgroup$



The datasheet application circuit example schematic shows a 1 microfarad polarized capacitor on the input and a 10 microfarad polarized capacitor on the output. Since the values are in the 1 plus microfarad range and the capacitors are shown as polarized, I would guess that the manufacturer (ST) wants you to use electrolytic caps. I guess you could use a tantalum caps, but unless the datasheet specifies tantalum, that would be a needless expense.



The polarized caps shown on the datasheet circuit lead me to believe that electrolytic caps are what are intended. Very few ceramic caps are over 1 microfarad and very few are polarized.







share|improve this answer












share|improve this answer



share|improve this answer










answered 6 hours ago









user193589user193589

408




408







  • 1




    $begingroup$
    Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
    $endgroup$
    – Hearth
    5 hours ago






  • 2




    $begingroup$
    I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
    $endgroup$
    – The Photon
    5 hours ago












  • 1




    $begingroup$
    Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
    $endgroup$
    – Hearth
    5 hours ago






  • 2




    $begingroup$
    I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
    $endgroup$
    – The Photon
    5 hours ago







1




1




$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
5 hours ago




$begingroup$
Actually, ceramic capacitors of up to hundreds of μF are, while not common, certainly readily available. They're not terribly expensive, either. Ceramic capacitor technology has improved dramatically in the past decade or so.
$endgroup$
– Hearth
5 hours ago




2




2




$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
5 hours ago




$begingroup$
I agree with Hearth that you're wrong to say 1 uF and up are rare as ceramics. But I'd still advise OP to stick with electrolytics since older regulator designs depend on a reasonably high ESR in the capacitor to maintain stability. If the datasheet doesn't promise the regulator is stable with low-ESR or ceramic output capacitors, it's not wise to assume it will be.
$endgroup$
– The Photon
5 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Electrical Engineering Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427585%2faluminum-electrolytic-or-ceramic-capacitors-for-linear-regulator-input-and-outpu%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager