Rationale for describing kurtosis as “peakedness”? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What is the relationship between risk aversion and preference for skewness and kurtosis in portfolio optimization?Calculating Portfolio Skewness & KurtosisDistribution for High Kurtosisderivation of formula for portfolio skewness and kurtosisSkewness and Kurtosis under aggregationHow to annualize skewness and kurtosis based on daily returnsHigh values of skewness and kurtosis of realized protfolio returnsHow do I get Value-at-Risk for a GED distribution in R?How to estimate option implied skewness and kurtosis in RKurtosis in GARCH

Tips to organize LaTeX presentations for a semester

Why is std::move not [[nodiscard]] in C++20?

Why is it faster to reheat something than it is to cook it?

How to change the tick of the color bar legend to black

A `coordinate` command ignored

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

What is the difference between a "ranged attack" and a "ranged weapon attack"?

Is openssl rand command cryptographically secure?

Why are vacuum tubes still used in amateur radios?

Why weren't discrete x86 CPUs ever used in game hardware?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

Why not send Voyager 3 and 4 following up the paths taken by Voyager 1 and 2 to re-transmit signals of later as they fly away from Earth?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Why datecode is SO IMPORTANT to chip manufacturers?

What is the "studentd" process?

In musical terms, what properties are varied by the human voice to produce different words / syllables?

I can't produce songs

Can an iPhone 7 be made to function as a NFC Tag?

Universal covering space of the real projective line?

Nose gear failure in single prop aircraft: belly landing or nose-gear up landing?

How does light 'choose' between wave and particle behaviour?

What does it mean that physics no longer uses mechanical models to describe phenomena?

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?



Rationale for describing kurtosis as “peakedness”?



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?What is the relationship between risk aversion and preference for skewness and kurtosis in portfolio optimization?Calculating Portfolio Skewness & KurtosisDistribution for High Kurtosisderivation of formula for portfolio skewness and kurtosisSkewness and Kurtosis under aggregationHow to annualize skewness and kurtosis based on daily returnsHigh values of skewness and kurtosis of realized protfolio returnsHow do I get Value-at-Risk for a GED distribution in R?How to estimate option implied skewness and kurtosis in RKurtosis in GARCH










1












$begingroup$


Despite plenty of evidence to the contrary, many quantitative finance sources of information, including teaching resources such as CFA prep, persist in defining kurtosis as a measure of "peakedness." Can anyone give a logical rationale for this characterization in terms of distributions of asset returns?










share|improve this question







New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    what is the "evidence to the contrary" ?
    $endgroup$
    – Alex C
    10 hours ago










  • $begingroup$
    Not trying to be a jerk here, but "Peakedness," "Tailedness" who cares? Is the characterization even important? For any metric, understanding use and interpretation are what matters.
    $endgroup$
    – amdopt
    5 hours ago















1












$begingroup$


Despite plenty of evidence to the contrary, many quantitative finance sources of information, including teaching resources such as CFA prep, persist in defining kurtosis as a measure of "peakedness." Can anyone give a logical rationale for this characterization in terms of distributions of asset returns?










share|improve this question







New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    what is the "evidence to the contrary" ?
    $endgroup$
    – Alex C
    10 hours ago










  • $begingroup$
    Not trying to be a jerk here, but "Peakedness," "Tailedness" who cares? Is the characterization even important? For any metric, understanding use and interpretation are what matters.
    $endgroup$
    – amdopt
    5 hours ago













1












1








1





$begingroup$


Despite plenty of evidence to the contrary, many quantitative finance sources of information, including teaching resources such as CFA prep, persist in defining kurtosis as a measure of "peakedness." Can anyone give a logical rationale for this characterization in terms of distributions of asset returns?










share|improve this question







New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Despite plenty of evidence to the contrary, many quantitative finance sources of information, including teaching resources such as CFA prep, persist in defining kurtosis as a measure of "peakedness." Can anyone give a logical rationale for this characterization in terms of distributions of asset returns?







kurtosis






share|improve this question







New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 10 hours ago









Peter WestfallPeter Westfall

1062




1062




New contributor




Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Peter Westfall is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    what is the "evidence to the contrary" ?
    $endgroup$
    – Alex C
    10 hours ago










  • $begingroup$
    Not trying to be a jerk here, but "Peakedness," "Tailedness" who cares? Is the characterization even important? For any metric, understanding use and interpretation are what matters.
    $endgroup$
    – amdopt
    5 hours ago
















  • $begingroup$
    what is the "evidence to the contrary" ?
    $endgroup$
    – Alex C
    10 hours ago










  • $begingroup$
    Not trying to be a jerk here, but "Peakedness," "Tailedness" who cares? Is the characterization even important? For any metric, understanding use and interpretation are what matters.
    $endgroup$
    – amdopt
    5 hours ago















$begingroup$
what is the "evidence to the contrary" ?
$endgroup$
– Alex C
10 hours ago




$begingroup$
what is the "evidence to the contrary" ?
$endgroup$
– Alex C
10 hours ago












$begingroup$
Not trying to be a jerk here, but "Peakedness," "Tailedness" who cares? Is the characterization even important? For any metric, understanding use and interpretation are what matters.
$endgroup$
– amdopt
5 hours ago




$begingroup$
Not trying to be a jerk here, but "Peakedness," "Tailedness" who cares? Is the characterization even important? For any metric, understanding use and interpretation are what matters.
$endgroup$
– amdopt
5 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Quailtatively a (zero skewness) Leptokurtic distribution, after being standardized to have zero mean and unit variance shows three features when you plot the density and compare it to a standard normal N(0,1) distribution: higher peak, higher (fatter) tails, and lower mid-range(*). All three properties go together, even though people sometimes mention only one of them ("a fat tailed distribution"). After all there has to be an area of 1 under the curve, and a variance of 1, so a deficit in the mid-range has to be made up by an excess elsewhere, i.e. in the tails and near the centre. Otherwise it would not be a probability distribution or would not have unit variance. The peakedness in the centre "balances" the thickness in the tails while staying with a unit variance.



So "peakedness in the centre" and "fat in the tails" describe exactly the same thing. You can't have one without the other.



(*) By mid-range is meant the two areas, one on each side, located approximately one standard deviation from the centre.






share|improve this answer











$endgroup$












  • $begingroup$
    I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
    $endgroup$
    – g g
    8 hours ago










  • $begingroup$
    Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
    $endgroup$
    – Jacques Joubert
    4 hours ago












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "204"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Peter Westfall is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquant.stackexchange.com%2fquestions%2f45215%2frationale-for-describing-kurtosis-as-peakedness%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Quailtatively a (zero skewness) Leptokurtic distribution, after being standardized to have zero mean and unit variance shows three features when you plot the density and compare it to a standard normal N(0,1) distribution: higher peak, higher (fatter) tails, and lower mid-range(*). All three properties go together, even though people sometimes mention only one of them ("a fat tailed distribution"). After all there has to be an area of 1 under the curve, and a variance of 1, so a deficit in the mid-range has to be made up by an excess elsewhere, i.e. in the tails and near the centre. Otherwise it would not be a probability distribution or would not have unit variance. The peakedness in the centre "balances" the thickness in the tails while staying with a unit variance.



So "peakedness in the centre" and "fat in the tails" describe exactly the same thing. You can't have one without the other.



(*) By mid-range is meant the two areas, one on each side, located approximately one standard deviation from the centre.






share|improve this answer











$endgroup$












  • $begingroup$
    I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
    $endgroup$
    – g g
    8 hours ago










  • $begingroup$
    Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
    $endgroup$
    – Jacques Joubert
    4 hours ago
















4












$begingroup$

Quailtatively a (zero skewness) Leptokurtic distribution, after being standardized to have zero mean and unit variance shows three features when you plot the density and compare it to a standard normal N(0,1) distribution: higher peak, higher (fatter) tails, and lower mid-range(*). All three properties go together, even though people sometimes mention only one of them ("a fat tailed distribution"). After all there has to be an area of 1 under the curve, and a variance of 1, so a deficit in the mid-range has to be made up by an excess elsewhere, i.e. in the tails and near the centre. Otherwise it would not be a probability distribution or would not have unit variance. The peakedness in the centre "balances" the thickness in the tails while staying with a unit variance.



So "peakedness in the centre" and "fat in the tails" describe exactly the same thing. You can't have one without the other.



(*) By mid-range is meant the two areas, one on each side, located approximately one standard deviation from the centre.






share|improve this answer











$endgroup$












  • $begingroup$
    I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
    $endgroup$
    – g g
    8 hours ago










  • $begingroup$
    Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
    $endgroup$
    – Jacques Joubert
    4 hours ago














4












4








4





$begingroup$

Quailtatively a (zero skewness) Leptokurtic distribution, after being standardized to have zero mean and unit variance shows three features when you plot the density and compare it to a standard normal N(0,1) distribution: higher peak, higher (fatter) tails, and lower mid-range(*). All three properties go together, even though people sometimes mention only one of them ("a fat tailed distribution"). After all there has to be an area of 1 under the curve, and a variance of 1, so a deficit in the mid-range has to be made up by an excess elsewhere, i.e. in the tails and near the centre. Otherwise it would not be a probability distribution or would not have unit variance. The peakedness in the centre "balances" the thickness in the tails while staying with a unit variance.



So "peakedness in the centre" and "fat in the tails" describe exactly the same thing. You can't have one without the other.



(*) By mid-range is meant the two areas, one on each side, located approximately one standard deviation from the centre.






share|improve this answer











$endgroup$



Quailtatively a (zero skewness) Leptokurtic distribution, after being standardized to have zero mean and unit variance shows three features when you plot the density and compare it to a standard normal N(0,1) distribution: higher peak, higher (fatter) tails, and lower mid-range(*). All three properties go together, even though people sometimes mention only one of them ("a fat tailed distribution"). After all there has to be an area of 1 under the curve, and a variance of 1, so a deficit in the mid-range has to be made up by an excess elsewhere, i.e. in the tails and near the centre. Otherwise it would not be a probability distribution or would not have unit variance. The peakedness in the centre "balances" the thickness in the tails while staying with a unit variance.



So "peakedness in the centre" and "fat in the tails" describe exactly the same thing. You can't have one without the other.



(*) By mid-range is meant the two areas, one on each side, located approximately one standard deviation from the centre.







share|improve this answer














share|improve this answer



share|improve this answer








edited 9 hours ago

























answered 10 hours ago









Alex CAlex C

6,72211123




6,72211123











  • $begingroup$
    I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
    $endgroup$
    – g g
    8 hours ago










  • $begingroup$
    Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
    $endgroup$
    – Jacques Joubert
    4 hours ago

















  • $begingroup$
    I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
    $endgroup$
    – g g
    8 hours ago










  • $begingroup$
    Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
    $endgroup$
    – Jacques Joubert
    4 hours ago
















$begingroup$
I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
$endgroup$
– g g
8 hours ago




$begingroup$
I understand where you are coming from but I think this is fruitless. Distributions are functions, i.e. they have infinite degrees of freedom. Were your statement still true if the distribution is multimodal or had point masses?
$endgroup$
– g g
8 hours ago












$begingroup$
Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
$endgroup$
– Jacques Joubert
4 hours ago





$begingroup$
Fat tails are a problem because so many of the models we use assume that the data are Gaussian IID. Fat tails means an increased probablility of events that we considered rare. For example the Black Scholes option pricing model assume your data are Gaussian. If they have a high kurtosis, this problematic.
$endgroup$
– Jacques Joubert
4 hours ago











Peter Westfall is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Peter Westfall is a new contributor. Be nice, and check out our Code of Conduct.












Peter Westfall is a new contributor. Be nice, and check out our Code of Conduct.











Peter Westfall is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Quantitative Finance Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquant.stackexchange.com%2fquestions%2f45215%2frationale-for-describing-kurtosis-as-peakedness%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager