what is the log of the PDF for a Normal Distribution? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution

"klopfte jemand" or "jemand klopfte"?

Random body shuffle every night—can we still function?

retrieve food groups from food item list

Is it dangerous to install hacking tools on my private linux machine?

What is the origin of 落第?

What does Turing mean by this statement?

Why is a lens darker than other ones when applying the same settings?

How can a team of shapeshifters communicate?

Moving a wrapfig vertically to encroach partially on a subsection title

Why weren't discrete x86 CPUs ever used in game hardware?

Is there hard evidence that the grant peer review system performs significantly better than random?

A term for a woman complaining about things/begging in a cute/childish way

Is openssl rand command cryptographically secure?

Relating to the President and obstruction, were Mueller's conclusions preordained?

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

A proverb that is used to imply that you have unexpectedly faced a big problem

How to force a browser when connecting to a specific domain to be https only using only the client machine?

Asymptotics question

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

New Order #6: Easter Egg

White walkers, cemeteries and wights

Where is the Next Backup Size entry on iOS 12?

Test print coming out spongy



what is the log of the PDF for a Normal Distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago

















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago













1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2
,-infty <x<infty
$$



taking log produces:



beginalign
ln(frac 1sigma sqrt 2pi
e^-frac (x - mu)^22sigma ^2) &=
ln(frac 1sigma sqrt 2pi)+ln(e^-frac (x - mu)^22sigma ^2)\
&=-ln(sigma)-frac12 ln(2pi) - frac (x - mu)^22sigma ^2
endalign



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









shi95shi95

83




83







  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago












  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago











  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago







3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago





$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago













$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



$$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



    For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



    $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



      For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



      $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac12 ln (2 pi) - frac12 Big( fracx-musigma Big)^2.$$



        For a sample of observed values $mathbfx = (x_1,...,x_n)$ you then have:



        $$ell_mathbfx(mu,sigma^2) = sum_i=1^n ell_x(mu,sigma^2) = - n ln sigma - fracn2 ln (2 pi) - frac12 sigma^2 sum_i=1^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        BenBen

        28.9k233129




        28.9k233129



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Oświęcim Innehåll Historia | Källor | Externa länkar | Navigeringsmeny50°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.2213950°2′18″N 19°13′17″Ö / 50.03833°N 19.22139°Ö / 50.03833; 19.221393089658Nordisk familjebok, AuschwitzInsidan tro och existensJewish Community i OświęcimAuschwitz Jewish Center: MuseumAuschwitz Jewish Center

            Valle di Casies Indice Geografia fisica | Origini del nome | Storia | Società | Amministrazione | Sport | Note | Bibliografia | Voci correlate | Altri progetti | Collegamenti esterni | Menu di navigazione46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)46°46′N 12°11′E / 46.766667°N 12.183333°E46.766667; 12.183333 (Valle di Casies)Sito istituzionaleAstat Censimento della popolazione 2011 - Determinazione della consistenza dei tre gruppi linguistici della Provincia Autonoma di Bolzano-Alto Adige - giugno 2012Numeri e fattiValle di CasiesDato IstatTabella dei gradi/giorno dei Comuni italiani raggruppati per Regione e Provincia26 agosto 1993, n. 412Heraldry of the World: GsiesStatistiche I.StatValCasies.comWikimedia CommonsWikimedia CommonsValle di CasiesSito ufficialeValle di CasiesMM14870458910042978-6

            Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?Draw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cmDrawing a Decision Diagram with Tikz and layout manager