Skip to main content

Elektromagnetvälja tensor Sisukord Detailid | Maxwelli võrrandid | Vaata ka | Navigeerimismenüür

Multi tool use
Multi tool use

ElektromagnetismRelativistlik füüsika


füüsikaline suuruselektromagnetväljakovariantseltneljamõõtmelineHermann MinkowskierirelatiivsusteooriaLorentzi invariantpseudoskalaarseLevi-Civita sümboldeterminant4-vektorpotentsiaalikovariantneMinkowski meetrikagaMaxwelli võrrandidelektrilaengu4-voolosatuletist










(function()var node=document.getElementById("mw-dismissablenotice-anonplace");if(node)node.outerHTML="u003Cdiv class="mw-dismissable-notice"u003Eu003Cdiv class="mw-dismissable-notice-close"u003E[u003Ca tabindex="0" role="button"u003Epeidau003C/au003E]u003C/divu003Eu003Cdiv class="mw-dismissable-notice-body"u003Eu003Cdiv id="localNotice" lang="et" dir="ltr"u003Eu003Cpu003Eu003Cbigu003EOsale artiklivõistlusel u003Ca href="/wiki/Vikipeedia:Wikimedia_CEE_Spring_2019" title="Vikipeedia:Wikimedia CEE Spring 2019"u003EKesk- ja Ida-Euroopa kevadu003C/au003E!u003C/bigu003Enu003C/pu003Eu003C/divu003Eu003C/divu003Eu003C/divu003E";());




Elektromagnetvälja tensor




Allikas: Vikipeedia






Jump to navigation
Jump to search












Elektromagnetvälja tensor on füüsikaline suurus, mis võimaldab elektromagnetvälja kovariantselt kirjeldada. Elektromagnetvälja tensor on neljamõõtmeline tensor, mida hakkas kasutama Hermann Minkowski enda loodud erirelatiivsusteooria formalismis. Elektromagnetvälja tensor võimaldab mõningaid füüsikaseadusi väga kompaktselt kirja panna.




Sisukord





  • 1 Detailid

    • 1.1 Omadused



  • 2 Maxwelli võrrandid


  • 3 Vaata ka




Detailid |


Matemaatiline märkus: selles artiklis kasutatakse abstraktset indeksinotatsiooni.

Elektromagnetvälja tensor Fμνdisplaystyle F^mu nu esitatakse tavaliselt maatriksina:


Fμν=(0−Ex/c−Ey/c−Ez/cEx/c0−BzByEy/cBz0−BxEz/c−ByBx0)displaystyle F^mu nu =beginpmatrix0&-E_x/c&-E_y/c&-E_z/c\E_x/c&0&-B_z&B_y\E_y/c&B_z&0&-B_x\E_z/c&-B_y&B_x&0endpmatrix

või


Fμν=(0Ex/cEy/cEz/c−Ex/c0−BzBy−Ey/cBz0−Bx−Ez/c−ByBx0)displaystyle F_mu nu =beginpmatrix0&E_x/c&E_y/c&E_z/c\-E_x/c&0&-B_z&B_y\-E_y/c&B_z&0&-B_x\-E_z/c&-B_y&B_x&0endpmatrix

kus

E on elektriväli,


B on magnetväli ja


c on valguse kiirus.


Ülaltoodud märgid sõltuvad aegruumi meetrilise tensori valikust. Siin kasutatakse märgikokkulepet +---, millele vastab meetriline tensor

(10000−10000−10000−1)displaystyle beginpmatrix1&0&0&0\0&-1&0&0\0&0&-1&0\0&0&0&-1endpmatrix


Omadused |


Väljatensori maatrikskujust ilmnevad järgmised omadused:



  • antisümmeetria: Fμν=−Fνμdisplaystyle F^mu nu ,=-F^nu mu (millest ka nimi bivektor).

  • elektrivälja tensoril on kuus sõltumatut komponenti.

Et tegemist on tensoriga, siis moodustub kontraktsioonidel Lorentzi invariant:


FμνFμν= 2(B2−E2c2)=invariantdisplaystyle F_mu nu F^mu nu = 2left(B^2-frac E^2c^2right)=mathrm invariant

Tensori Fμνdisplaystyle F^mu nu , korrutis oma duaalse tensoriga annab pseudoskalaarse invariandi:


ϵαβγδFαβFγδ=4c(B→⋅E→)=invariantdisplaystyle epsilon _alpha beta gamma delta F^alpha beta F^gamma delta =frac 4cleft(vec Bcdot vec Eright)=mathrm invariant ,

kus  ϵαβγδdisplaystyle epsilon _alpha beta gamma delta , on neljandat järku täielikult antisümmeetiline pseudotensor ehk Levi-Civita sümbol.


Märkus: ülalasuva avaldise märk sõltub Levi-Civita sümboli jaoks kasutatavast märgikokkuleppest. Siin kasutatud kokkulepe on  ϵ0123displaystyle epsilon _0123, = +1.


Elektromagnetvälja tensori determinant on



det(F)=1c2(B→⋅E→)2displaystyle det left(Fright)=frac 1c^2left(vec Bcdot vec Eright)^2.

Elektromagnetvälja tensori saab kirja panna 4-vektorpotentsiaali Aαdisplaystyle A^alpha , kaudu:


Fαβ =def ∂Aβ∂xα−∂Aα∂xβ =def ∂αAβ−∂βAαdisplaystyle F_alpha beta stackrel mathrm def = frac partial A_beta partial x^alpha -frac partial A_alpha partial x^beta stackrel mathrm def = partial _alpha A_beta -partial _beta A_alpha

Kus nelivektorpotentsiaal on moodustatud magnetvälja vektorpotentsiaalist ja elektrivälja (skalaarsest) potentsiaalist:


Aμ=(ϕc,A→)displaystyle A^mu =left(frac phi c,vec Aright)

ja selle kovariantne kuju leitakse korrutamisel Minkowski meetrikaga ηdisplaystyle eta , :


Aμ=ημνAν=(−ϕc,A→)displaystyle A_mu ,=eta _mu nu A^nu =left(-frac phi c,vec Aright)


Maxwelli võrrandid |



Next.svg Pikemalt artiklis Maxwelli võrrandid.

Maxwelli võrrandid võtavad elektromagnetilise tensori kaudu väljendudes võrdlemisi kompaktse kuju. Elektrivälja jaoks kehtib


∂βFαβ=μ0Jαdisplaystyle partial _beta F^alpha beta =mu _0J^alpha ,

kus


Jα=(cρ,J→)displaystyle J^alpha =(c,rho ,vec J),

on elektrilaengu 4-vool.


Võrrandid magnetismi jaoks taanduvad kujule


Fαβ,γ+Fβγ,α+Fγα,β=0displaystyle F_alpha beta ,gamma +F_beta gamma ,alpha +F_gamma alpha ,beta =0,

kus koma tähistab osatuletist



∂f∂xγ≡∂γf≡f,γdisplaystyle partial f over partial x^gamma equiv partial _gamma fequiv f_,gamma .


Vaata ka |


  • Elektromagnetism



Pärit leheküljelt "https://et.wikipedia.org/w/index.php?title=Elektromagnetvälja_tensor&oldid=4657297"










Navigeerimismenüü

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.132","walltime":"0.363","ppvisitednodes":"value":1180,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":31521,"limit":2097152,"templateargumentsize":"value":15511,"limit":2097152,"expansiondepth":"value":12,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":1373,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 85.703 1 -total"," 95.85% 82.143 1 Mall:Elektromagnetism"," 92.19% 79.007 1 Mall:Külgteemakast_peidetava_loendiga"," 64.10% 54.937 1 Mall:Külgteemakast"," 39.81% 34.117 1 Mall:Navbar"," 5.12% 4.387 6 Mall:Külgteemakast_peidetava_loendiga/rida"," 3.05% 2.618 1 Mall:Vaata"],"scribunto":"limitreport-timeusage":"value":"0.018","limit":"10.000","limitreport-memusage":"value":594568,"limit":52428800,"cachereport":"origin":"mw1333","timestamp":"20190309204341","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Elektromagnetvu00e4lja tensor","url":"https://et.wikipedia.org/wiki/Elektromagnetv%C3%A4lja_tensor","sameAs":"http://www.wikidata.org/entity/Q1076013","mainEntity":"http://www.wikidata.org/entity/Q1076013","author":"@type":"Organization","name":"Wikimedia projektide kaastu00f6u00f6lised","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2009-03-12T21:22:29Z","dateModified":"2017-05-24T11:51:55Z","image":"https://upload.wikimedia.org/wikipedia/commons/0/0d/VFPt_Solenoid_correct2.svg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":115,"wgHostname":"mw1257"););5yE 8eu6 g9,g6EZl,bUoMoMzatje0,SYT2Q C5fAp4MvAmaVTm JRpNmPGRlT,4tOeLE,LX Umy,YIOP GN89XLMnsTEA5Z E CT2RuXXRj
KCrI,KNjs5CdYih8HvWCq0hfNOCo1Fon0V7x3p wUKk,Vipo8Tq98tiZOFTXcW,Fa1,7OMvfjX Q

Popular posts from this blog

Creating centerline of river in QGIS? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Finding centrelines from polygons in QGIS?Splitting line into two lines with GRASS GIS?Centroid of the equator and a pointpostgis: problems creating flow direction polyline; not all needed connections are drawnhow to make decent sense from scattered river depth measurementsQGIS Interpolation on Curved Grid (River DEMs)How to create automatic parking baysShortest path creation between two linesclipping layer using query builder in QGISFinding which side of closest polyline point lies on in QGIS?Create centerline from multi-digitized roadway lines Qgis 2.18Getting bathymetric contours confined only within river banks using QGIS?

What is the result of assigning to std::vector::begin()? The Next CEO of Stack OverflowWhat are the differences between a pointer variable and a reference variable in C++?What does the explicit keyword mean?Concatenating two std::vectorsHow to find out if an item is present in a std::vector?Why is “using namespace std” considered bad practice?What is the “-->” operator in C++?What is the easiest way to initialize a std::vector with hardcoded elements?What is The Rule of Three?What are the basic rules and idioms for operator overloading?Why are std::begin and std::end “not memory safe”?